
Red-Black Trees 

Based on materials by Dennis Frey, Yun Peng, 
Jian Chen, and Daniel Hood 



Advanced Data Structures 

n  CS 206 covered basic data structures 
q  Lists, binary search trees, heaps, hash tables 

n  CS 246 will introduce you to some advanced data 
structures and their use in applications 
q  Red-Black Trees:  a type of self-balancing BST 
q  KD-Trees:  a type of space partitioning tree 
q  Graphs:  represents a set of entities and relations 

n  Over the next few weeks, we will discuss these 
data structures, starting today with Red-Black Trees 
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Quick Review of Binary Search Trees 

n  Given a node n... 
q  All elements of n’s left subtree are less than n.data 
q  All elements of n’s right subtree are greater than 

n.data 
n  We are prohibiting duplicate values 
n  Insert/Find/Remove are O(height)  (why?) 
n  The tree’s height varies between lg N and N 

q  A balanced tree has height lg N 
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Review of Tree Rotations:  Zig-Zig 
(Node and Parent are Same Side) 

Rotate P around G, then X around P 
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Review of Tree Rotations:  Zig-Zag 
(Node and Parent are Different Sides) 

Rotate X around P, then X around G 



DEFINITIONS 
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Red-Black Trees 

n  Definition: A red-black tree is a binary 
search tree in which: 
q  Every node is colored either Red or Black. 
q  Each NULL pointer is considered to be a Black “node”. 
q  If a node is Red, then both of its children are Black. 
q  Every path from a node to a NULL contains the same 

number of Black nodes. 
q  By convention, the root is Black 

n  Definition:  The black-height of a node X in 
a red-black tree is the number of Black 
nodes on any path to a NULL, not counting 
X. 
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A Red-Black Tree with NULLs shown 

Black-Height of the tree (the root) = 3 
Black-Height of node “X” = 2 
 

X
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A Red-Black Tree with 

Black-Height = 3 
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Black Height of the tree? 

Black Height of X? 

X
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Theorem 1 – Any red-black tree with root x, 
has  n ≥ 2bh(x) – 1 nodes, where bh(x) is 
the black height of node x. 

Proof: by induction on height of x. 
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Theorem 2 – In a red-black tree, at least half 
the nodes on any path from the root to a 
NULL must be Black. 

 
Proof – If there is a Red node on the path, 

there must be a corresponding Black 
node. 

 
Algebraically this theorem means 

    bh( x ) ≥ h/2 
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Theorem 3 – In a red-black tree, no path from any 
node, X, to a NULL is more than twice as long as 
any other path from X to any other NULL. 

 
Proof:  By definition, every path from a node to any 

NULL contains the same number of Black nodes.  
By Theorem 2, a least ½ the nodes on any such 
path are Black.  Therefore, there can no more 
than twice as many nodes on any path from X to 
a NULL as on any other path.  Therefore the 
length of every path is no more than twice as 
long as any other path. 
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Theorem 4 – 
 A red-black tree with n nodes has height   
                   h ≤ 2 lg(n + 1). 

Proof:  
Let h be the height of the red-black tree with 
root x. By Theorem 2, 

   bh(x) ≥ h/2 
From Theorem 1, n ≥  2bh(x) - 1 
Therefore n ≥ 2 h/2 – 1 

   n + 1 ≥ 2h/2 

   lg(n  + 1) ≥ h/2 
   2lg(n + 1) ≥ h 



BOTTOM-UP INSERTION 
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Bottom –Up Insertion 

n  Insert node as usual in BST 
n  Color the node Red 
n  What Red-Black property may be violated? 

q  Every node is Red or Black? 
q  NULLs are Black? 
q  If node is Red, both children must be Black? 
q  Every path from node to descendant NULL must 

contain the same number of Blacks? 
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Bottom Up Insertion 

n  Insert node; Color it Red; X is pointer to it 
n  Cases 

0:  X is the root -- color it Black 
1:  Both parent and uncle are Red -- color parent and 

uncle Black, color grandparent Red. Point X to 
grandparent and check new situation. 

2 (zig-zag): Parent is Red, but uncle is Black. X and its 
parent are opposite type children -- color grandparent 
Red, color X Black, rotate left(right) on parent, rotate 
right(left) on grandparent 

3 (zig-zig):  Parent is Red, but uncle is Black. X and its 
parent are both left (right) children -- color parent Black, 
color grandparent Red, rotate right(left) on grandparent 
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X 

P

G 

U

P

G 

U

Case 1 – U is Red 

Just Recolor and move up 

X 
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X 

P

G 

U

S X 

P G

S
U

Case 2 – Zig-Zag 

Double Rotate 
   X around P; X around G 

Recolor G and X 
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X 

P

G 

U

S P 

X G

S U

Case 3 – Zig-Zig 

Single Rotate P around G 

Recolor P and G 
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Asymptotic Cost of Insertion 

n  O(lg n) to descend to insertion point 
n  O(1) to do insertion 
n  O(lg n) to ascend and readjust == worst case 

only for case 1 

n  Total: O(lg n) 
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11 

14 

15 
2 

1 7 

5 8 

Black node Red node 

Insert 4 into this 
R-B Tree 
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Insertion Practice 

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an 
initially empty Red-Black Tree 



24 

Top-Down Insertion 

An alternative to this “bottom-up” insertion is 
“top-down” insertion. 

Top-down is iterative.  It moves down the tree, 
“fixing” things as it goes. 

 
What is the objective of top-down’s “fixes”? 
 



BOTTOM-UP DELETION 

25 



26 

Recall “ordinary” BST Delete 

1.  If node to be deleted is a leaf, just delete it. 
2.  If node to be deleted has just one child, 

replace it with that child (splice) 
3.  If node to be deleted has two children, 

replace the value in the node by its in-
order predecessor/successor’s value then 
delete the in-order predecessor/successor  
(a recursive step) 
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Bottom-Up Deletion 

1.  Do ordinary BST deletion.  Eventually a 
“case 1” or “case 2” deletion will be 
done (leaf or just one child). 
 -- If deleted node, U,  is a leaf, think of 

deletion as replacing U with the NULL 
pointer, V.   
 -- If U had one child, V, think of deletion 

as replacing U with V. 
2.  What can go wrong?? 
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Which RB Property may be violated 
after deletion? 
1.  If U is Red? 

 Not a problem – no RB properties violated 
 

2.  If U is Black? 
 If U is not the root, deleting it will change 
the black-height along some path 



29 

Fixing the problem 

n  Think of V as having an “extra” unit of 
blackness.  This extra blackness must be 
absorbed into the tree (by a red node), or 
propagated up to the root and out of the tree. 

n  There are four cases – our examples and 
“rules” assume that V is a left child.  There 
are symmetric cases for V as a right child. 
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Terminology 

n  The node just deleted was U 
n  The node that replaces it is V, which has 

an extra unit of blackness 
n  The parent of V is P 
n  The sibling of V is S 
 

Black Node 

Red Node 

Red or Black and don’t care 
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Bottom-Up Deletion 
Case 1 

n  V’s sibling, S, is Red 
q  Rotate S around P and recolor S & P 

n  NOT a terminal case – One of the other 
cases will now apply 

n  All other cases apply when S is Black 
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Case 1 Diagram 

P

SV+ 
P

S

V+ 

Rotate S around P 

P

V+ 

S

Recolor S & P 
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Bottom-Up Deletion 
Case 2 
n  V’s sibling, S, is Black and has two Black 

children. 
q  Recolor S to be Red 
q  P absorbs V’s extra blackness 

n  If P is Red, we’re done (it absorbed the blackness) 
n  If P is Black, it now has extra blackness and problem 

has been propagated up the tree 
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Case 2 diagram 

P

SV+ 

P+ 

SV 

Recolor S  
P absorbs blackness 

Either extra Black absorbed by P  

 or 

P now has extra blackness 
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Bottom-Up Deletion 
Case 3 

n  S is Black 
n  S’s right child is RED (Left child either color) 

q  Rotate S around P 
q  Swap colors of S and P,  

and color S’s right child Black 
 

n  This is the terminal case – we’re done 
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Case 3 diagrams 

P

SV+ P

S

V+ 

Rotate S around P 

P

S

V Swap colors of S & P 
Color S’s right child 
Black 
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Bottom-Up Deletion 
Case 4 
n  S is Black, S’s right child is Black and S’s 

left child is Red 
q  Rotate  S’s left child around S 
q  Swap color of S and S’s left child 
q  Now in case 3 
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Case 4 Diagrams 

P

SV+ 

P

S
V+ 

Rotate S’s 
left around S 

P

S
V+ 

Swap colors of S 
and S’s original 
left child 
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Top-Down Deletion 

An alternative to the recursive “bottom-up” 
deletion is “top-down” deletion. 

This method is iterative.  It moves down the 
tree only, “fixing” things as it goes. 

 
What is the goal of top-down deletion? 
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65 

50 80 

10 60 70 90 

62 

Perform the following deletions, in the order specified 
 Delete 90, Delete 80, Delete 70 


