Red-Black Trees

Based on materials by Dennis Frey, Yun Peng, Jian Chen, and Daniel Hood
Advanced Data Structures

- CS 206 covered basic data structures
 - Lists, binary search trees, heaps, hash tables
- CS 246 will introduce you to some advanced data structures and their use in applications
 - Red-Black Trees: a type of self-balancing BST
 - KD-Trees: a type of space partitioning tree
 - Graphs: represents a set of entities and relations

Over the next few weeks, we will discuss these data structures, starting today with Red-Black Trees
Quick Review of Binary Search Trees

- Given a node n...
 - All elements of n’s left subtree are less than $n.data$
 - All elements of n’s right subtree are greater than $n.data$

- We are prohibiting duplicate values

- Insert/Find/Remove are $O(\text{height})$ (why?)

- The tree’s height varies between $\lg N$ and N
 - A balanced tree has height $\lg N$
Review of Tree Rotations: Zig-Zig (Node and Parent are Same Side)

Rotate P around G, then X around P
Review of Tree Rotations: Zig-Zag
(Node and Parent are Different Sides)

Rotate X around P, then X around G
DEFINITIONS
Red-Black Trees

Definition: A red-black tree is a binary search tree in which:

- Every node is colored either Red or Black.
- Each NULL pointer is considered to be a Black "node".
- If a node is Red, then both of its children are Black.
- Every path from a node to a NULL contains the same number of Black nodes.
- By convention, the root is Black

Definition: The **black-height** of a node X in a red-black tree is the number of Black nodes on any path to a NULL, not counting X.
A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3
Black-Height of node “X” = 2
A Red-Black Tree with

Black-Height = 3
Black Height of the tree?

Black Height of X?
Theorem 1 – Any red-black tree with root \(x \), has \(n \geq 2^{bh(x)} - 1 \) nodes, where \(bh(x) \) is the black height of node \(x \).

Proof: by induction on height of \(x \).
Theorem 2 – In a red-black tree, at least half the nodes on any path from the root to a NULL must be Black.

Proof – If there is a Red node on the path, there must be a corresponding Black node.

Algebraically this theorem means

\[bh(x) \geq h/2 \]
Theorem 3 – In a red-black tree, no path from any node, X, to a NULL is more than twice as long as any other path from X to any other NULL.

Proof: By definition, every path from a node to any NULL contains the same number of Black nodes. By Theorem 2, at least \(\frac{1}{2} \) the nodes on any such path are Black. Therefore, there can no more than twice as many nodes on any path from X to a NULL as on any other path. Therefore the length of every path is no more than twice as long as any other path.
Theorem 4 –
A red-black tree with \(n \) nodes has height
\[h \leq 2 \log(n + 1). \]

Proof:
Let \(h \) be the height of the red-black tree with root \(x \). By Theorem 2,
\[bh(x) \geq h/2 \]
From Theorem 1, \(n \geq 2^{bh(x)} - 1 \)
Therefore \(n \geq 2^{h/2} - 1 \)
\[n + 1 \geq 2^{h/2} \]
\[\log(n + 1) \geq h/2 \]
\[2\log(n + 1) \geq h \]
BOTTOM-UP INSERTION
Bottom –Up Insertion

- Insert node as usual in BST
- Color the node Red
- What Red-Black property **may** be violated?
 - Every node is Red or Black?
 - NULLs are Black?
 - If node is Red, both children must be Black?
 - Every path from node to descendant NULL must contain the same number of Blacks?
Bottom Up Insertion

- Insert node; Color it Red; X is pointer to it
- Cases
 0: X is the root -- color it Black
 1: Both parent and uncle are Red -- color parent and uncle Black, color grandparent Red. Point X to grandparent and check new situation.
 2 (zig-zag): Parent is Red, but uncle is Black. X and its parent are opposite type children -- color grandparent Red, color X Black, rotate left(right) on parent, rotate right(left) on grandparent
 3 (zig-zig): Parent is Red, but uncle is Black. X and its parent are both left (right) children -- color parent Black, color grandparent Red, rotate right(left) on grandparent
Case 1 – U is Red
Just Recolor and move up
Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X
Case 3 – Zig-Zig
Single Rotate P around G
Recolor P and G
Asymptotic Cost of Insertion

- $O(\lg n)$ to descend to insertion point
- $O(1)$ to do insertion
- $O(\lg n)$ to ascend and readjust == worst case
 only for case 1

- Total: $O(\lg n)$
Insert 4 into this R-B Tree
Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty Red-Black Tree
Top-Down Insertion

An alternative to this “bottom-up” insertion is “top-down” insertion. Top-down is iterative. It moves down the tree, “fixing” things as it goes.

What is the objective of top-down’s “fixes”?
BOTTOM-UP DELETION
Recall “ordinary” BST Delete

1. If node to be deleted is a leaf, just delete it.
2. If node to be deleted has just one child, replace it with that child (splice)
3. If node to be deleted has two children, replace the value in the node by its in-order predecessor/successor’s value then delete the in-order predecessor/successor (a recursive step)
Bottom-Up Deletion

1. Do ordinary BST deletion. Eventually a “case 1” or “case 2” deletion will be done (leaf or just one child).
 -- If deleted node, U, is a leaf, think of deletion as replacing U with the NULL pointer, V.
 -- If U had one child, V, think of deletion as replacing U with V.

2. What can go wrong??
Which RB Property may be violated after deletion?

1. If U is Red?
 Not a problem – no RB properties violated

2. If U is Black?
 If U is not the root, deleting it will change the black-height along some path
Fixing the problem

- Think of V as having an “extra” unit of blackness. This extra blackness must be absorbed into the tree (by a red node), or propagated up to the root and out of the tree.
- There are four cases – our examples and “rules” assume that V is a left child. There are symmetric cases for V as a right child.
Terminology

- The node just deleted was U
- The node that replaces it is V, which has an extra unit of blackness
- The parent of V is P
- The sibling of V is S

- Black Node
- Red Node
- Red or Black and don’t care
Bottom-Up Deletion

Case 1

- V’s sibling, S, is Red
 - Rotate S around P and recolor S & P
- NOT a terminal case – One of the other cases will now apply
- All other cases apply when S is Black
Case 1 Diagram

Rotate S around P

Recolor S & P
Bottom-Up Deletion
Case 2

- V’s sibling, S, is Black and has two Black children.
 - Recolor S to be Red
 - P absorbs V’s extra blackness
 - If P is Red, we’re done (it absorbed the blackness)
 - If P is Black, it now has extra blackness and problem has been propagated up the tree
Case 2 diagram

Either extra Black absorbed by P

or

P now has extra blackness
Bottom-Up Deletion
Case 3

- S is Black
- S’s right child is RED (Left child either color)
 - Rotate S around P
 - Swap colors of S and P,
 and color S’s right child Black

- This is the terminal case – we’re done
Case 3 diagrams

- Rotate S around P
- Swap colors of S & P
- Color S’ s right child Black
Bottom-Up Deletion

Case 4

- S is Black, S’s right child is Black and S’s left child is Red
 - Rotate S’s left child around S
 - Swap color of S and S’s left child
 - Now in case 3
Case 4 Diagrams

Rotate S’s left around S

Swap colors of S and S’ s original left child
Top-Down Deletion

An alternative to the recursive “bottom-up” deletion is “top-down” deletion. This method is iterative. It moves down the tree only, “fixing” things as it goes.

What is the goal of top-down deletion?
Perform the following deletions, in the order specified
Delete 90, Delete 80, Delete 70