
Red-Black Trees

Based on materials by Dennis Frey, Yun Peng,
Jian Chen, and Daniel Hood

Advanced Data Structures

n  CS 206 covered basic data structures
q  Lists, binary search trees, heaps, hash tables

n  CS 246 will introduce you to some advanced data
structures and their use in applications
q  Red-Black Trees: a type of self-balancing BST
q  KD-Trees: a type of space partitioning tree
q  Graphs: represents a set of entities and relations

n  Over the next few weeks, we will discuss these
data structures, starting today with Red-Black Trees

2

Quick Review of Binary Search Trees

n  Given a node n...
q  All elements of n’s left subtree are less than n.data
q  All elements of n’s right subtree are greater than

n.data
n  We are prohibiting duplicate values
n  Insert/Find/Remove are O(height) (why?)
n  The tree’s height varies between lg N and N

q  A balanced tree has height lg N

3

4

Review of Tree Rotations: Zig-Zig
(Node and Parent are Same Side)

Rotate P around G, then X around P

5

Review of Tree Rotations: Zig-Zag
(Node and Parent are Different Sides)

Rotate X around P, then X around G

DEFINITIONS

6

7

Red-Black Trees

n  Definition: A red-black tree is a binary
search tree in which:
q  Every node is colored either Red or Black.
q  Each NULL pointer is considered to be a Black “node”.
q  If a node is Red, then both of its children are Black.
q  Every path from a node to a NULL contains the same

number of Black nodes.
q  By convention, the root is Black

n  Definition: The black-height of a node X in
a red-black tree is the number of Black
nodes on any path to a NULL, not counting
X.

8

A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3
Black-Height of node “X” = 2

X

9

A Red-Black Tree with

Black-Height = 3

10

Black Height of the tree?

Black Height of X?

X

11

Theorem 1 – Any red-black tree with root x,
has n ≥ 2bh(x) – 1 nodes, where bh(x) is
the black height of node x.

Proof: by induction on height of x.

12

Theorem 2 – In a red-black tree, at least half
the nodes on any path from the root to a
NULL must be Black.

Proof – If there is a Red node on the path,

there must be a corresponding Black
node.

Algebraically this theorem means

 bh(x) ≥ h/2

13

Theorem 3 – In a red-black tree, no path from any
node, X, to a NULL is more than twice as long as
any other path from X to any other NULL.

Proof: By definition, every path from a node to any

NULL contains the same number of Black nodes.
By Theorem 2, a least ½ the nodes on any such
path are Black. Therefore, there can no more
than twice as many nodes on any path from X to
a NULL as on any other path. Therefore the
length of every path is no more than twice as
long as any other path.

14

Theorem 4 –
 A red-black tree with n nodes has height
 h ≤ 2 lg(n + 1).

Proof:
Let h be the height of the red-black tree with
root x. By Theorem 2,

 bh(x) ≥ h/2
From Theorem 1, n ≥ 2bh(x) - 1
Therefore n ≥ 2 h/2 – 1

 n + 1 ≥ 2h/2

 lg(n + 1) ≥ h/2
 2lg(n + 1) ≥ h

BOTTOM-UP INSERTION

15

16

Bottom –Up Insertion

n  Insert node as usual in BST
n  Color the node Red
n  What Red-Black property may be violated?

q  Every node is Red or Black?
q  NULLs are Black?
q  If node is Red, both children must be Black?
q  Every path from node to descendant NULL must

contain the same number of Blacks?

17

Bottom Up Insertion

n  Insert node; Color it Red; X is pointer to it
n  Cases

0: X is the root -- color it Black
1: Both parent and uncle are Red -- color parent and

uncle Black, color grandparent Red. Point X to
grandparent and check new situation.

2 (zig-zag): Parent is Red, but uncle is Black. X and its
parent are opposite type children -- color grandparent
Red, color X Black, rotate left(right) on parent, rotate
right(left) on grandparent

3 (zig-zig): Parent is Red, but uncle is Black. X and its
parent are both left (right) children -- color parent Black,
color grandparent Red, rotate right(left) on grandparent

18

X

P

G

U

P

G

U

Case 1 – U is Red

Just Recolor and move up

X

19

X

P

G

U

S X

P G

S
U

Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X

20

X

P

G

U

S P

X G

S U

Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G

21

Asymptotic Cost of Insertion

n  O(lg n) to descend to insertion point
n  O(1) to do insertion
n  O(lg n) to ascend and readjust == worst case

only for case 1

n  Total: O(lg n)

22

11

14

15
2

1 7

5 8

Black node Red node

Insert 4 into this
R-B Tree

23

Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an
initially empty Red-Black Tree

24

Top-Down Insertion

An alternative to this “bottom-up” insertion is
“top-down” insertion.

Top-down is iterative. It moves down the tree,
“fixing” things as it goes.

What is the objective of top-down’s “fixes”?

BOTTOM-UP DELETION

25

26

Recall “ordinary” BST Delete

1.  If node to be deleted is a leaf, just delete it.
2.  If node to be deleted has just one child,

replace it with that child (splice)
3.  If node to be deleted has two children,

replace the value in the node by its in-
order predecessor/successor’s value then
delete the in-order predecessor/successor
(a recursive step)

27

Bottom-Up Deletion

1.  Do ordinary BST deletion. Eventually a
“case 1” or “case 2” deletion will be
done (leaf or just one child).
 -- If deleted node, U, is a leaf, think of

deletion as replacing U with the NULL
pointer, V.
 -- If U had one child, V, think of deletion

as replacing U with V.
2.  What can go wrong??

28

Which RB Property may be violated
after deletion?
1.  If U is Red?

 Not a problem – no RB properties violated

2.  If U is Black?
 If U is not the root, deleting it will change
the black-height along some path

29

Fixing the problem

n  Think of V as having an “extra” unit of
blackness. This extra blackness must be
absorbed into the tree (by a red node), or
propagated up to the root and out of the tree.

n  There are four cases – our examples and
“rules” assume that V is a left child. There
are symmetric cases for V as a right child.

30

Terminology

n  The node just deleted was U
n  The node that replaces it is V, which has

an extra unit of blackness
n  The parent of V is P
n  The sibling of V is S

Black Node

Red Node

Red or Black and don’t care

31

Bottom-Up Deletion
Case 1

n  V’s sibling, S, is Red
q  Rotate S around P and recolor S & P

n  NOT a terminal case – One of the other
cases will now apply

n  All other cases apply when S is Black

32

Case 1 Diagram

P

SV+
P

S

V+

Rotate S around P

P

V+

S

Recolor S & P

33

Bottom-Up Deletion
Case 2
n  V’s sibling, S, is Black and has two Black

children.
q  Recolor S to be Red
q  P absorbs V’s extra blackness

n  If P is Red, we’re done (it absorbed the blackness)
n  If P is Black, it now has extra blackness and problem

has been propagated up the tree

34

Case 2 diagram

P

SV+

P+

SV

Recolor S
P absorbs blackness

Either extra Black absorbed by P

 or

P now has extra blackness

35

Bottom-Up Deletion
Case 3

n  S is Black
n  S’s right child is RED (Left child either color)

q  Rotate S around P
q  Swap colors of S and P,

and color S’s right child Black

n  This is the terminal case – we’re done

36

Case 3 diagrams

P

SV+ P

S

V+

Rotate S around P

P

S

V Swap colors of S & P
Color S’s right child
Black

37

Bottom-Up Deletion
Case 4
n  S is Black, S’s right child is Black and S’s

left child is Red
q  Rotate S’s left child around S
q  Swap color of S and S’s left child
q  Now in case 3

38

Case 4 Diagrams

P

SV+

P

S
V+

Rotate S’s
left around S

P

S
V+

Swap colors of S
and S’s original
left child

39

Top-Down Deletion

An alternative to the recursive “bottom-up”
deletion is “top-down” deletion.

This method is iterative. It moves down the
tree only, “fixing” things as it goes.

What is the goal of top-down deletion?

40

65

50 80

10 60 70 90

62

Perform the following deletions, in the order specified
 Delete 90, Delete 80, Delete 70

