
Setting up a computing environment for C like mine.

There are a lot of things you can do to set up you computer for this course. The document
covers what I did. Feel free to copy me. If you do not, you are largely on your own. (If you do
copy me, you are only slightly less on your own.) It is certainly possible to set up a c compiler
on your local machine an an alternative to following these directions. It is also possible to do
everything on the CS unix servers and use your own machine simply as a terminal. I have
taken all of these approaches (and others) at times during the past few years. This is what I
currently do. Be aware that all programs MUST compile and run on the Unix servers. So even
if you do everything locally, before turning in assignments you will probably want to test on
Unix.

Please note: this is a really long configuration process, with many places to go wrong. I have
checked this on both windows and Macs, but it is possible that I missed some steps. I
encourage you to follow these directions slowly. Do you best to understand, not just type. (I
know that there is a lot here that you will not understand. Every step should make sense by
the end of the semester.)

Watch out for “.” within the shell commands below. “.” is a significant character and should
not be missed.

TYPOGRAPHY: I attempt below to always put commands to be typed into a terminal on lines
by themselves and in the menlo font.

Step 1:

Create a Public/Private key

(These steps were updated 6pm on 2/12) to insert a new step at step 9.

1. Open a terminal window (You will use terminals a lot this semester.)

1. On a mac: Start the Terminal program in Applications/Utilities

2. On Windows: Open a windows powershell (type powershell in the search box in lower

left then enter)

2. Enter the following command to start the key generation process

	 ssh-keygen -t rsa

3. Press the ENTER key to accept the default location.

4. The ssh-keygen utility will then prompt you for a passphrase. Press enter to give no

passphrase. The point of creating the key is so that you do not need to enter a pass
phrase all the time

5. cd to the location you were told was the default location. Usually this will work 
 cd .ssh

5. In this directory you should see id_rsa and id_rsa.pub. These are your private and public
keys

6. Execute the following command 
 scp id_rsa.pub YOUR_NAME@165.106.10.186:mpub

7. ssh into that machine 
 ssh YOUR_NAME@165.106.10.186

8. on …186
 mkdir .ssh
 cd .ssh

9. if this directory contains the file authorized_keys then on …186 
 cat ~/mpub >> authorized_keys 

else 
 cp ~/mpub authorized_keys

10. exit …186, on …186  
 exit

11. log back into …186 as in step 7. If everything worked correctly you should not have to
enter a password. This is what you want! If you are still asked for a password, you did
something wrong.

Step 2 (optional):

(This step works on Mac/Unix, it might not work on Windows)

Add some ssh configuration

Within the .ssh directory on your local machine create a file named config

Into that file put the following:

Host lab186

 HostName 165.106.10.186

 ForwardX11 yes

 ForwardX11Trusted yes

 User YOUR_UNIX_NAME

test this configuration. In a terminal/powershell

	 ssh lab186

The configuration saves you a little extra typing. (There is a lot more you can do with
configuration files. Feel free to explore. Also take a look at my config file /home/gtowell/
Public/246/config. There are actually 10 lab machines available. My config sets up a shortcut
to each.)

Step 3:

Get and install Visual Studio Code (VSC)

https://code.visualstudio.com/download

Step 4.

Add extensions to VSC

The only extensions I use for 246 are:

	 C/C++ from Microsoft (v1.1.3) Other version numbers are likely OK

	 SFTP by lixmomo v1.12.9

Extensions are added/changed by tapping on the icon at left which is on the left
edge of the VSC window.

Step 5.

C include files. C include files are similar to Java includes except that are actual separate files.
You will learn more about them in class. For now, just know that you will need them and you
do not have them on your personal machine. You do not really need them on your machines,
but VSC will be a lot happier with them there.

	 open powershell/terminal

	 cd ~
 scp main186:/home/gtowell/Public/246/includee.tar .
 tar fvx includee.tar
 rm includee.tar

Step 6.

Make a directory where all of your work will live

	 open a terminal/powershell and connect to main186 using ssh (you can use the
terminal from step 5 if it is still open)

	 Create a folder into which all of your 246 work will be put. For example:

	 	 mkdir 246

	 Leave this terminal open on your device, you will come back to it

Step 7.

	 Open VSC

	 Set up a directory in VSC that you will use as the root directory of your coding. You
might name this 246 to echo the name on unix

	 Hit the F1 button

	 	 in the search window that appears enter “SFTP:config” then hit return

	 this will open an editor on a file sftp.json that initially contains just {}

	 replace the {} with

{

 "name": “main186”,

 "host": “165.106.10.186”,

 "protocol": "sftp",

 "port": 22,

 "username": “YOUR UNIX NAME",

 "privateKeyPath": “PATH TO YOUR id_rsa FILE ON YOUR DEVICE”,

 "remotePath": "246",

 "uploadOnSave": true

}

On my mac the private key path is /Users/geoffreytowell/.ssh/id_rsa

On my windows box the private key path is c:\\Users\\towell\\.ssh\\id_rsa

The remote path is the directory you made in step 6 on the lab machines

Your paths will likely be similar.

Step 8:

Configure C/C++ in VSC to use your includes

	 Within VSC hit F1, then type “c/c++: edit con” then click on the line that ends “(JSON)”

	 Find

"includePath": [

 “${workspaceFolder}/**"

],

	 Change this entry to be:

 "includePath": [

 "${workspaceFolder}/**",

 "~/include"

],

	 Also find

	 	 ”cStandard": “c89",

	 and change it to

	 	 "cStandard": "c11",

This tells VSC to use the include files you installed in step 5 and to use the correct version of C

Step 9. Test your work

Create a new file in your 246 directory in VSC (this will be on your local machine). For instance
name the file HW.c and create a hello world program given below.

#include <stdio.h>

int main(int argc, char const *argv[])

{

 printf("Hello World\n");

 return 0;

}

If you step up the include files correctly you should have no red squiggle underlines. Otherwise
you might have several.

Save the program

Go over to the window in which you should still have an open connection to powerpuff

	 cd 246
 ls
You should see the file HW.c (If it is not there then there is a problem with your SFTP
configuration)

Compile and run

	 gcc HW.c
 a.out

Please note that you can— and indeed should use subfolders. If you create the subfolders
within VSC the sftp config will create parallel subfolders on the UNIX side.

Every time you save, the file gets copied over to UNIX. (It you did not create and install the
public/private keys correctly, this would get very old, very fast)

 

