
CS246
Unix: more shell scripting

C:queues
April 8

apropos
• get a listing of all commands that have the word in a short version of

their man page

• UNIX> apropos file
• not working on my mac

• UNIX> apropos file | wc returns 1198 possible items
• Contrast with “which”

2

gtowell@benz:~$ apropos gzip
gzip (1) - compress or expand files
lz (1) - gunzips and shows a listing of a gzip'd tar'd archive
tgz (1) - makes a gzip'd tar archive
uz (1) - gunzips and extracts a gzip'd tar'd archive
zforce (1) - force a '.gz' extension on all gzip files

Shell script loops
• while loop looks a

lot like if execpt
• if then if
• while do done

3

1.#!/bin/bash
2.# Basic while loop

4.counter=1
5.while [$counter -le 10]
6.do
7.echo $counter
8.((counter++))
9.done

11.echo All done
12.

loops in shell scripts
• $(()) in shell script mean — roughly “I am doing

math inside here”
• hence “counter=$(($counter+1))” does what you think

• unlike [] not space sensitive
• ${} notation for vars is never wrong to use

• counter=$((${counter}+1))
• Sometimes there are shortcuts

• ((counter++))
• note no leading $
• putting $ would indicate that the math

returned a value
• I tend away from shortcuts because I never

remember them

4

#!/bin/bash
counter=1
while [$counter -le 10]
do
echo $counter
counter=$(($counter+1))
((counter++)) # shortcut form
done
echo All done

shell loops
• Several forms of for

loops exist.
• This one takes

string, splits it and
works with each part

• The string to be split
can come from
anywhere
• for instance, from

executing ls

5

#!/bin/bash
Basic for loop
names='Stan Kyle Cartman'
names=`ls`
for name in $names
do
echo $name
done
echo All done

more shell loops
• note (()) to

invoke math-
like
operations,
• again, the

shortcut
form

6

#!/bin/bash
Basic range in for loop
for value in {1..5}
do
echo $value
done
echo All done

#!/bin/bash
Basic C-like for loop
for ((i=1; i<=5; i++))
do
echo $i
done
echo All done

Space used by files
with an extension
• usage: UNIX> l5.sh sh
• This gives the number of bytes

used by all files with .sh extension
in the current directory

• The FILES var is actually
unnecessary
• kind of wasteful also
• change

for FILE in $FILES
to
for FILE in *.$1

7

file l5.sh

FILES=`ls *.${1}`
TOT=0
for FILE in $FILES
do
 DET=`ls -l $FILE`
 CNT=0
 for DETP in $DET
 do
 #echo "$CNT $DETP"
 if [$CNT -eq 4]
 then
 TOT=$(($TOT + $DETP))
 #echo $DETP
 fi
 ((CNT++))
 done
done
echo $TOT

the publish problem
Solution
• make a link to the file

using ln -s where the
link has a browser-
known extension
• e.g. “.txt”
• Allows updating

without having to
recopy a lot

• Create a shell script to
do this in bulk.

8

#!/bin/bash
param="java"
if ["$1" != ""]; then
 param=$1
fi
for f in *.$param;
do
echo ${f/./}
ln -s $f ${f/./}.txt
done

bash has some built in text
manipulation. This uses it

${VAR/replace/replacement}

Suppose you did not know of
bash text manipulation

aa=`echo $f | tr -d .`

or

aa=`echo $f | tr . d`
ln -s $f ${a}.txt

LAB
• write a shell script that lists all files in the current directory

and all direct subdirectories.
• This should not be a recursive listing of all subdirectories.

Just go one down

9

Queues
• Use the DLL struct
• needs more
• removeTail

• Revisit DLLItem
constructor/destructor
and eliminate the copy
into new memory. Just
take the thing supplied
• Otherwise need to take

care to free the
returned thing!!

10

char* removeTail(DLL *dll) {
 if (dll->count<=0)
 return NULL;
 dll->count--;
 DLLItem *itm = dll->tail;
 DLLItem *tprev = itm->prev;
 if (tprev==NULL) {
 dll->head = NULL;
 dll->tail = NULL;
 return;
 }
 dll->tail = tprev;
 tprev->next = NULL;
 char *rtn = malloc((strlen(itm->payload) + 1) * sizeof(char));
 strcpy(rtn, itm->payload);
 freeDLLItem(itm);
}

required because
the info would be lost

otherwise, but!!!!

Q Basics
• Constructor,

destructor, and
struct are pretty
minimal

11

typedef struct {
 DLL *internal;
} Queue;

Queue* makeQueue() {
 Queue *rtn = malloc(1 * sizeof(Queue));
 rtn->internal = makeDLL();
 return rtn;
}

void freeQueue(Queue* q) {
 freeDLL(q->internal);
 free(q);
}

Q more
• rest is pretty basic

also

• Essentially all work
done by DLL!

12

void add2Queue(Queue* q, char* item) {
 addDLLHead(q->internal, item);
}

char* pullFromQueue(Queue* q) {
 return removeTail(q->internal);
}

Splitting & Making
• I made a single dll.c and

dll.h
• IMHO DLLItem is more

a private inner class
and so it does not get
its own file(s)
• but this is a style

choice
• Also a .c and .h for

queue

13

CFLAGS = -g -O2

dll: dll.c dll.h
 gcc $(CFLAGS) -o dll dll.c

queue: dll.o queue.c
 gcc $(CFLAGS) -o queue dll.o queue.c

dll.o: dll.c dll.h
 gcc $(CFLAGS) -c -D DOTO=1 dll.c

clean:
 rm *.o dll queue

Splitting Issues 1
• C does not allow typedefs to be declared multiple times

• explicitly forbidden in C11
• Consider three files at right

• when compile get error
• a.h:3:3: note: previous declaration of
‘A’ was here
3 | } A;

• Solution 1 … instruct users to avoid the issue …
• do not actually need the a.h include since it comes

in with b.h
• lousy solution since it relies on everyone

knowing and REMEMBERING
• Also, a.h may come in via some other .h file so even

if you assume people remember a conflict can occur

14

file a.h

typedef struct {
 int v1;
} A;

file b.h

#include "a.h"
typedef struct {
 A oneA;
} B;

file b.c

#include "a.h"
#include "b.h"
B b;
A a;
int main(int argc, char const *argv[]) {
 return 0;
}

Splitting issues 1
continued
• Better solution is to ensure

that definitions can only occur
once!!
• use #ifndef … #endif

15

file a.h

#ifndef TYPE_A_DEFINED
typedef struct {
 int v1;
} A;
#define TYPE_A_DEFINED 1
#endif

file b.h

#include "a.h"

#ifndef TYPE_B_DEFINED
typedef struct {
 A oneA;
} B;
#define TYPE_B_DEFINED 1
#endif

Splitting Issues 2
• Problem
• this all looks correct …

and it is
• but gcc fails

• Why?
• Linking issues!!!

16

file s1.h

int doS1();

file s2.c

#include "s1.h"
#include <stdio.h>

int main(int argc, char const *argv[])
{
 printf("%d\n", doS1());
 return 0;
}

file s1.c

#include "s1.h"
int doS1() {
 return 42;
}

[gtowell@powerpuff L14]$ gcc s2.c
/bin/ld: /tmp/cc8w1v2M.o: in function `main':
s2.c:(.text+0x15): undefined reference to `doS1'
collect2: error: ld returned 1 exit status

Splitting Issues 2
Continued
• Recall that gcc actually takes 3 steps

• 1. Preprocess
• 2. Compile
• 3. Link

• In this case preprocess and compile both work fine.
• Those steps take the function prototypes as

promises that the definition will appear later
• later MUST be in the link.

• in this case there is no body supplied for
doS1()

17

[gtowell@powerpuff L14]$ gcc -c s1.c
[gtowell@powerpuff L14]$ gcc -o s2 s2.c s1.o

Use a makefile!!!

Splitting issue 3
• I want each of my .c files to

have a main function for
testing purposes. But if I do
that, the compiler (actually
the linker) complains

18

file m1.h

int dom1();

file m2.h

int doS1();

file m1.c

int dom1() {
 return 42;
}

int main(int argc,
char const
*argv[])
{
 printf("M1
%d\n", dom1());
 return 0;
}

file m2.c

#include "m1.h"

int dom2() {
 return 84;
}

int main(int argc,
char const *argv[])
{
 printf("M2 %d
%d", dom1(),
dom2());
 return 0;
}

[gtowell@powerpuff L14]$ gcc m1.c
[gtowell@powerpuff L14]$./a.out
M1 42
[gtowell@powerpuff L14]$ gcc -c m1.c
[gtowell@powerpuff L14]$ gcc m2.c m1.o
/bin/ld: m1.o: in function `main':
m1.c:(.text+0xb): multiple definition of `main'; /tmp/
cctzIOI8.o:m2.c:(.text+0xb): first defined here
collect2: error: ld returned 1 exit status

Splitting issue 3
continued
• The problem is that there are two implementations of

main and they conflict.
• Once solution would be to put the main functions into

their own file and compile/link appropriately
• This gets cumbersome (lots of files) and it looses the

clear linkage between the main and the functions being
tested.
• Better is to wrap main #ifndef
• then when compiling with -c flag a -D to define

M1C_MAIN

19

file m1.c

int dom1() {
 return 42;
}

#ifndef M1C_MAIN
int main(int argc,
char const
*argv[])
{
 printf("M1
%d\n", dom1());
 return 0;
}
#endif

[gtowell@powerpuff L14]$ gcc -c -DM1C_MAIN m1.c
[gtowell@powerpuff L14]$ gcc m2.c m1.o
[gtowell@powerpuff L14]$ a.out

Review
• Pointers, pointers and more pointers
• recursion and tail recursion
• why tail recursion matters

• typedefs
• structs
• why not pass by value
• constructors and destructors

• malloc and free
• UNIX
• putting it all together with scripts

20

STOP HERE

21

Garbage Collection in Java
• Why doesn’t java need free?

22

GDB
• “Gnu DeBugger”
• Allows you to inspect program while running
• breakpoints
• conditional breakpoints

• Another way to attack segmentation faults
• arguably better

• Debuggers arguably give a lot more flexibility than print
statements

23

A Program
that breaks
• gdb loves line numbers
• cat -n xxx.c

• Program has three
issues

24

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 void smashing() {
 5 int aa[10];
 6 for (int i = 0; i < 20; i++) {
 7 aa[i] = i;
 8 }
 9 }
 10 int main(int argc, char const *argv[])
 11 {
 12 int strt = atoi(argv[1]);
 13 int aa[strt];
 14 smashing();
 15 for (int i = 0; i < 1000; i++)
 16 {
 17 printf("%d %d\n", i, aa[i]);
 18 }
 19 return 0;
 20 }

gbd usage
• gcc
• compile with -g flag
• like valgrind

• UNIX> gdb executable
• Equivalently
• UNIX> gdb
• (gdb) file executable

• like valgrind

• Does not start the program

25

[gtowell@powerpuff L14]$ gcc -g broken.c
[gtowell@powerpuff L14]$ gdb a.out
GNU gdb (GDB) 9.1
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-pc-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
--Type <RET> for more, q to quit, c to continue without paging--q
Quit
(gdb)

gdb help
• gdb is interactive and runs its own shell-like thing
• tab completion for commands
• file name completion
• help

• (gdb) help [command]

26

gdb basic usage
• quit
• exit gdb

• run
• runs the program without args

• run arg1 arg2 …
• exactly like UNIX> executable

arg1 arg2 …

•

27

gdb breakpoints
• places where the program execution will stop
• you can set as many as you want

• by line number
• (gdb) break filename:linenumber
• if only a single file can omit filename
• gdb broken.c:12

• by function:
• (gdb) break smashing
• no filename since function names are unique in C

28

gdb doing things at a pause
• (gdb) continue
• resume program execution

• (gdb) step
• advance one line in program
• will go into called functions

• (gdb) next
• does not go into called functions
• other debuggers call this “step over”

• (gdb)<ENTER> repeat last command

29

gdb — inspecting when program paused
• to look at the value of a variable when program is paused
• (gdb) print varName

• (gdb) watch varName
• program pauses whenever named var changes!

•

30

Conditional breakpoints
• (gdb) break 12 if i>10
•

31

