
CS246
Unix Directories, sort

2d Arrays, working with pointers
March 1

Typical Unix directories

• / the beginning - the root
• /bin — executables
• /dev — “devices” like disk drives
• /etc — configuration files
• /home — user directories
• /lib — libraries

• parts of executables
• usually a .so extension eg libc.so

• this is the library that from “gcc -lc -xc xxx.c”
• /usr —

• things that may also be in /
• /usr/bin, /usr/include, …

• /usr/local — stuff NOT in standard UNIX …
• /usr/include — where all #include <xxx.h> live in Unix.

• /proc
• NOT actual files but lots of great info

• /proc/cpuinfo, /proc/stat, /proc/uptime
• /proc/# one for every running process

• frequently there are utilities that show information from proc in human readable forms

2

In Unix everything looks like a file and is treated like a file!!
So everything is findable in the directory structure

UNIX sort command (also tr, uniq)
• recall “ls -lart” or “ls -lat”
• sort entries by time
• suppose want to sort by size?

• The Unix sort utility! (man page)
• ls -la | sort
• ls -la | sort -k 5 -n -r
• things — directories are small but NOT all the same size
• soft links show as 17 bytes

• ls -laS does this, probably by piping through sort

3

UNIX tr,uniq
• tr — “translate”
• replace a character with another
• ls -la | tr “d” “q”
• cat file | tr [:punct:] “ “
• replaces all punctuation in a file with a space

• Uniq — “unique”
• compare consecutive lines and eliminate duplicates

4

list all unique words in a text
• cat text | tr [:punct:] " " | tr A-Z a-z | tr " " "\n" | sort | uniq

• first tr removes punctuation
• second downcase
• third puts each word on a line (there will be lots of blank lines)
• sort puts same words next to each other
• uniq eliminates duplicates
• DONE …

• How to get count?
• Efficiency?

• ~/Public/206/a4/janeausten.txt, ~/Public/206/a4/dickens.txt, ~/Public/
206/a4/ham.txt

5

Thursday Lab
• Infinite loop?
• Improve?

• Add some defines for 97, 122
and 32
• move “if.. break” inside while

• “fgets”
• recall array are just pointers to

the start of a reserved block of
memory
• so fgets is “write up to

LINE_LEN-1 chars you get from
stdin to memory starting at the
memory loc given by line”
• why the -1?

6

#define LINE_LEN 256
void shout()
{
 char line[LINE_LEN];
 while (1) {
 if (NULL == fgets(line, LINE_LEN, stdin))
 break;
 for (int i = 0; line[i] != '\0'; i++) {
 if (line[i] >= 97 && line[i] <= 122) {
 line[i] = line[i] - 32;
 }
 }
 printf("%s\n", line);
 }
}

int main(void) {
 shout();
}

Java and C and Arrays
• Java

• Java arrays are a pointer to a block of memory + size of the memory block + type of thing in the
block
• “new” operation in java dynamically allocates from “heap”

• heap is global memory space
• size of heap is bounded by machine memory

• Because array allocation is always in the heap space it can be used outside that function
• C

• arrays are pointer to a block of memory
• global arrays are allocated from heap
• arrays in functions are allocated in “stack” space

• stack space clears when function completes for arrays cannot be passed back from functions
• size of array inside function is bounded by size of “stack space”

7

Arrays — behind the scenes
• A contiguous block of memory
• int arr[10]
• space of 10 ints — sizeof(int) = 4
• 40 bytes

• So what happens when you say
• arr[5] = 42
• Calculate: loc = array_start + 5 * sizeof(int)
• write the number 42 into the 4 bytes starting at loc

8

2D Arrays

• int array2d[3][5];
• Row major vs Column Major
• C uses row major (as does Java)
• Fortran used Column Major

• Array Initialization
• int array[6] = {1,1,2,3,5,8,13,21,34};
• int array2d[3][5]={{1,2,3,4,5},  
 {6,7,8,9,10},  
 {11,12,13,14,15}};

9

Address Row
Major

Column
Major

0 a[0][0] a[0][0]
1 a[0][1] a[1][0]
2 a[0][2] a[2][0]
3 a[0][3] a[0][1]
4 a[0][4] a[1][1]
5 a[1][0] a[2][1]
6 a[1][1] a[0][2]
7 … …

More 2d Array
• int array2d[3][5]={{1,2,3,4,5},  
 {6,7,8,9,10},  
 {11,12,13,14,15}};
• Row-major	or	col-major,	does	not	matter	
• int array2d[3][5]
={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
• LEGAL	—	identical	to	previous	initializer	
• RM	vs	CM	matters	

• LOC	=	start	+	row_length*row_number*sizeof(int)	+	
col_num*sizeof(int)

10

Passing 2d arrays
• recall
• void f2(int arrSize, int farr[arrSize])
• the arrSize in array declaration is optional

• For 2d arrays
• void ap(int rows, int cols, int arr[][cols])
• sizes	of	all	dimensions	other	than	first	is	REQUIRED	
• Another	manifestation	of	R-M	ordering	
• How	do	you	do	the	LOC	calculation	without	knowing	column	
numbers

11

n dimensional arrays

• int arr[5][12][4]….;
• When passing n dim arrays every dimension other than first

must be specified!
• e.g.void printArray(int rows, int cols, int
d3, int arr[][cols][d3])

12

Order [in]dependence
• Recall that C compile is single pass
• so function/global vars must be “known” before they can be

used
• PUT all global vars at top of file
• cannot do that for functions

• put signature of functions at top of file!
• shoutc2.c

• Alternate solution .h files

13

string.h

• Has other includes
• Defines a bunch of

“string” functions
• __functions
• DO NOT

OVERWRITE
• “extern” will be

implemented
elsewhere
• assumed in .h files

• .h files may also have
variables

14

#include <bits/libc-header-start.h>
#include <stddef.h>

/* Copy N bytes of SRC to DEST. */
extern void *memcpy (void *__restrict __dest, const void *__restrict __src,
 size_t __n) __THROW __nonnull ((1, 2));

/* Copy SRC to DEST, returning the address of the terminating '\0' in DEST.
*/
extern char *__stpcpy (char *__restrict __dest, const char *__restrict __src)
 __THROW __nonnull ((1, 2));
extern char *stpcpy (char *__restrict __dest, const char *__restrict __src)
 __THROW __nonnull ((1, 2));

/* Copy no more than N characters of SRC to DEST, returning the address of
 the last character written into DEST. */
extern char *__stpncpy (char *__restrict __dest,
 const char *__restrict __src, size_t __n)
 __THROW __nonnull ((1, 2));
extern char *stpncpy (char *__restrict __dest,
 const char *__restrict __src, size_t __n)
 __THROW __nonnull ((1, 2));

writing .h files
• generally include anything you want to share
• think the “public” variables and functions of java
• may include
• signatures of functions
• includes
• global variables
• defines

• Order still matters
• OK to include .h more than once
• loops are bad!

15

Using .h you write
• #include “my.h”
• “”: look for .h

starting from
here
• <>: look for .h

starting from /
usr/include

16

shout.h

void shout();

shoutc2.h

#include <stdio.h>
#include <shout.h>

#define LINE_LEN 256

Breaking things up using .h

• using .h files you
can break things
up something like
java
• problem
• Not every .c

file contains
“main”
• How to you tell

gcc what to do?

17

shoutc3b.c
contains the shout function

shoutcMain.c
contains the main function

shoutc.h
just the prototype of shout();

shout3Main.c

#include <stdio.h>
#include "shoutc.h"

int main(void) {
 shout();
}

[gtowell@powerpuff L05]$ gcc -c shoutc3b.c
[gtowell@powerpuff L05]$ gcc -o shout shoutc3b.o shout3Main.c
[gtowell@powerpuff L05]$ shout

compile but do not create
executable. Instead stop
and output shoutc3b.o

compile shout3Main.c, then link
it to shout3b.o to create the
executable “shout”

Writing your own versions of library
functions
• atoi
• ascii to integer
• takes a “string” as input, returns an integer

• atoigt.c

18

LAB
• Write your own implementation of strcpy
• void strcpy(int destLen, char dest[destLen], char
source[]);

• You version should take two char arrays
• copy from first into second until
• string end in first
• out of space in second

• You MUST be sure than the second ends with \0

19

