CS246
Unix Directories, sort
2d Arrays, working with pointers

March 1

Typical Unix directories

In Unix everything looks like a file and is treated like a file!!
So everything is findable in the directory structure

* / the beginning - the root
* /bin — executables
» /dev — “devices” like disk drives
« /etc — configuration files
» /home — user directories
* /lib — libraries
* parts of executables
« usually a .so extension eg libc.so
+ this is the library that from “gcc -lc -xc xxx.c”
e /usr —
* things that may also be in /
 /usr/bin, /usr/include, ...
« /usr/local — stuff NOT in standard UNIX ...
« /usr/include — where all #include <xxx.h> live in Unix.
* /proc
* NOT actual files but lots of great info
« /proc/cpuinfo, /proc/stat, /proc/uptime
* /proc/# one for every running process
« frequently there are utilities that show information from proc in human readable forms

UNIX sort command (also tr, unig)

* recall “ls -lart” or “ls -lat”
* sort entries by time
 suppose want to sort by size?
* The Unix sort utility! (man page)
s -la | sort
els-la|sort-k5-n-r
* things — directories are small but NOT all the same size
* soft links show as 17 bytes
* |s -laS does this, probably by piping through sort

UNIX tr,uniq

e tr — “translate”
* replace a character with another
els-la | tr “d” “q”
e cat file | tr [:punct:]
* replaces all punctuation in a file with a space
* Unig — “unique”
e compare consecutive lines and eliminate duplicates

€ ¢

Ist all unigue words In a text

ecat text | tr [:punct:] " " | trA-Za-z | tr " " "\n" | sort | uniq
« first tr removes punctuation
» second downcase
« third puts each word on a line (there will be lots of blank lines)
e sort puts same words next to each other
 uniq eliminates duplicates
« DONE ...
* How to get count?
» Efficiency?

» ~/Public/206/a4/janeausten.txt, ~/Public/206/a4/dickens.txt, ~/Public/
206/a4/ham.txt

#define LINE_LEN 256
ab void shout()

Thursday

{
e Infinite [Oop? char line[LINE_LEN];
while (1) {
-In1prove? . if (NULL == fgets(line, LINE_LEN, stdin))
» Add some defines for 97, 122 break:
and 32 for (int i = 0; linel[il !'= '"\0'; i++) {
* move “if.. break” inside while if (line[i] >= 97 && line[i] <= 122) {
o “fgets” line[i] = linel[i] - 32;
* recall array are just pointers to ;
the start of a reserved block of ; | |
memory printf("%s\n", line);
: ({3 : }
50 fgets is “write up to \

LINE_LEN-1 chars you get from
stdin to memory starting at the
memory loc given by line”

* why the -1?

int main(void) {
shout();
}

Java and C and Arrays

* Java

« Java arrays are a pointer to a block of memory + size of the memory block + type of thing in the
block

» “new” operation in java dynamically allocates from “heap”
* heap is global memory space
* size of heap is bounded by machine memory
» Because array allocation is always in the heap space it can be used outside that function
«C
* arrays are pointer to a block of memory
* global arrays are allocated from heap
« arrays in functions are allocated in “stack” space
» stack space clears when function completes for arrays cannot be passed back from functions
* size of array inside function is bounded by size of “stack space”

Arrays — behind the scenes

* A contiguous block of memory
 int arr[10]

* space of 10 ints — sizeof(int) = 4
* 40 bytes
* So what happens when you say
« arr[5] = 42

 Calculate: loc = array_start + 5 * sizeof(int)
* write the number 42 into the 4 bytes starting at loc

2D Arrays

*int array2d[3][5];

* Row major vs Column Major
* C uses row major (as does Java)
* Fortran used Column Major

* Array Initialization
*int array[6] = {1,1,2,3,5,8,13,21,34};

*int array2d[3][5]={{1,2,3,4,5},
{6I7I8I9I10}I
{11,12,13,14,15}};

Major (Major

NOoON O AN W N - O

a[0][0]
a[0][1]
a[0][2]
a[0][3]
a[0][4]
a[1][0]
a[1][1]

a[0][0]
a[1][0]
a[2][0]
a[0][1]
a[1][1]
a[2][1]
a[0][2]

More 2d Array

e int array2d[3][5]={{1,2,3,4,5},
{6171819110}1
{11,12,13,14,15}};

e Row-major or col-major, does not matter

eint array2d[3][5]
={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

 LEGAL — identical to previous initializer
* RM vs CM matters

e LOC = start + row_length*row _number*sizeof(int) +
col_num*sizeof(int)

Passing 2d arrays

* recall
evoid f2(int arrSize, 1int farr[arrSize])
* the arrSize in array declaration is optional
 For 2d arrays
e void ap(int rows, int cols, int arr[][cols])
* sizes of all dimensions other than first is REQUIRED
 Another manifestation of R-M ordering

 How do you do the LOC calculation without knowing column
numbers

N dimensional arrays

*int arr[5][12][4]...;

* When passing n dim arrays every dimension other than first
must be specified!

*e.g.void printArray(int rows, 1int cols, int
d3, int arr[][cols][d3])

Order [in]dependence

 Recall that C compile is single pass

* so function/global vars must be “known” before they can be
used

* PUT all global vars at top of file
 cannot do that for functions

 put signhature of functions at top of file!
* shoutc2.c

* Alternate solution .h files

string.n

* Has other includes

* Defines a bunch of
“string” functions

 functions

* DO NOT
OVERWRITE

o “extern” will be
implemented
elsewhere

e assumed in .h files

* .h files may also have
variables

#include <bits/libc-header-start.h>
#include <stddef.h>

/* Copy N bytes of SRC to DEST. */
extern void *memcpy (void *__restrict __dest, const void *__restrict __src,
size_t __n) __THROW __nonnull ((1, 2));

/* Copy SRC to DEST, returning the address of the terminating \O" in DEST.

*/

extern char *__stpcpy (char *__restrict __dest, const char *__restrict __src
__THROW __nonnull ((1, 2));

extern char *stpcpy (char *__restrict __dest, const char *__restrict __src)
__THROW __nonnull ((1, 2));

/* Copy no more than N characters of SRC to DEST, returning the address o1
the last character written into DEST. */
extern char *__stpncpy (char *__restrict __dest,
const char *__restrict __src, size_t __n)

__THROW __nonnull ((1, 2));

extern char *stpncpy (char *__restrict __dest,
const char *__restrict __src, size_t _ n)
__THROW __nonnull ((1, 2));

writing .h files

 generally include anything you want to share
* think the “public” variables and functions of java
* may include
* signatures of functions
e includes
* global variables
* defines
* Order still matters
* OK to include .h more than once
* loops are bad!

Using .h you write

* #include “my.h”

o “7- look for .h
starting from
here

e <>: ook for .h
starting from /
usr/include

shout.h

void shout();

shoutc2.h

#include <stdio.h>
#include <shout.h>

#define LINE_LEN 256

e using .h files you
can break things
up something like
java

 problem

* Not every .c
file contains
“ma.in”

* How to you tell
gcc what to do?

Sreaking things up using .h shout3Main. c

#include <stdio.h>

shoutc3b.c #include "shoutc.h"
contains the shout function

shoutcMain.c int main(void) {
contains the main function shout();

shoutc.h 1

just the prototype of shout();

compile but do not create compile shout3Main.c, then link
executable. Instead stop it to shout3b.o to create the
and output shoutc3b.o executable “shout”

[gtowell@powerpuff LO5]S gcc -c shoutc3b.c
[gstowell@powerpuff LO5]S gcc -o shout shoutc3b.o shout3Main.c
[gtowell@powerpuff LO5]S shout

Writing your own versions of library
functions

* atoi
* asCii to integer
 takes a “string” as input, returns an integer

e atoigt.c

AB

* Write your own implementation of strcpy

* void strcpy(int destLen, char dest[destLen], char
source[]);

* You version should take two char arrays
 copy from first into second until
* string end in first
* out of space in second
* You MUST be sure than the second ends with \0

