
CMSC 246: Systems
Programming

Spring 2021

Instructor: Geoffrey Towell

Important Info
• Class Web Page

• http://cs.brynmawr.edu/cs246
• All assignments
• Lecture Notes

• Should be posted before class
• Important dates, etc

• Moodle — Nothing
• 2 mid-terms and a final
• Weekly Programming assignments
• Labs:

• Rather than a single weekly event, there will be a problem to solve. You may, and
are encouraged to work in groups on these.

2

http://cs.brynmawr.edu/cs246

First Things

3

• CS account
▫ Make sure you can log in to CS Unix servers
▫ ssh YOUR_UNIX_NAME@powerpuff.cs.brynmawr.edu

▫ If you cannot, let me know ASAP

• Software: the unix command line!!! (and gcc)

• You should have received from me a description of how to
set up your laptops.

• If your have not followed these directions do so ASAP.

Goals
• Learn Unix/Linux (CLI, not WIMP!)
• Windows, Icons, Menus, Pointer
• Command Line Interface

• Learn C

• Learn Linux tools

4

Why command line tools?
• Flexibility and Power!

• Problem: get a list of all “included” files in C programs I wrote in recently.
• These files are all in subdirectories from a particular directory
• First solution:

• grep -R --include “*.c" include
• This was really long and repetitive — how long?

• grep -R --include “*.c" include | wc
• Problem duplicates

• after some thought
• grep -R --include “*.c" include | sed 's/^.*\(:.*\).*$/\1/' | sort | uniq

5

Evolution of C

6

Algol60
Designed by an international
committee, 1960

CPL
Combined Programming Language
Cambridge & Univ. of London, 1963
Was an attempt to bring Algol down
To earth and retail contact with the
Realities of an actual computer.
Features:
• Big
• Too many features
• Hard to learn
• Intended for numerical as well as

non-numerical applications

BCPL
Basic CPL
Designed by Martin Richards, Cambridge 1967
Intended as a tool for writing compilers.
Designed to allow for separate compilation.
Features:
• Typeless language (only binary words)
• Introduced static variables
• Compact code
• Provodes access to address of data objects
• Stream-based I/O

B
Designed by Ken Thompson, Bell Labs 1970
A true forerunner of C
Features:
• Typeless (with floating pt. capabilities
• Designed for separate compilation
• Easily implementable
• Pre-processor facility
• Expensive library

C
1971-72
Developed at Bell Laboratories by
Ken Thompson, Dennis Ritchie, and others.
C is a by-product of UNIX.
Ritchie began to develop an extended version of B.
He called his language NB (“New B”) at first.
As the language began to diverge more from B,
he changed its name to C.
The language was stable enough by 1973 that
UNIX could be rewritten in C.

K&R C
Described in Kernighan and Ritchie,
The C Programming Language (1978)
De facto standard
Features:
• Standard I/O Library
• long int data type
• Unsigned int data type
• Compound assignment operators

C89/C90
ANSI standard X3.159-1989
Completed in 1988
Formally approved in December 1989
International standard ISO/IEC 9899:1990
A superset of K&R C
Heavily influenced by C++, 1979-83
• Function prototypes
• void pointers
• Modified syntax for parameter declarations
• Remained backwards compatible with K&R C

C99
International standard ISO/IEC 9899:1999
Incorporates changes from Amendment 1 (1995)
Features:
• Inline functions
• New data types (long long int, complex, etc.)
• Variable length arrays
• Support for IEEE 754 floating point
• Single line comments using //

Onwards to C11…

Languages and Cars

7

C is a racing car that goes incredibly fast but breaks down every fifty miles.
Java is a family station wagon. It's easy to drive, it's not too fast, and you can't hurt yourself.
Perl is supposed to be a pretty cool car, but the driver's manual is incomprehensible. Also, even if
you can figure out how to drive a Perl car, you won't be able to drive anyone else’s.
Python is a great beginner's car; you can drive it without a license. Unless you want to drive really
fast or on really treacherous terrain, you may never need another car.
Lisp: At first it doesn't seem to be a car at all, but now and then you spot a few people driving it
around. After a point you decide to learn more about it and you realize it's actually a car that can
make more cars. You tell your friends, but they all laugh and say these cars look way too weird. You
still keep one in your garage, hoping one day they will take over the streets.

Properties of C
• Low-level
• Small
• Permissive
• Fast

8

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

double

Strengths of C
• Efficiency
• Portability
• Power
• Flexibility
• Standard library??
• Integration with UNIX

9

Weaknesses of C
• Programs can be error-prone.
• Programs can be difficult to understand.

• International Obfuscated C Code Contest
#include<stdio.h>
int a = 256;int main(){for(char b[a+a+a],
*c=b ,*d=b+ a ,*e=b+a+a,*f,*g=fgets(e,(b[
a]=b [a+a] =a- a,a) , stdin);c[0]=a-a,f=c
,c=d ,d=e ,e=f, f= g,g =0,g = fgets(e,a+a
-a+ a -a+a -a+ a- +a,stdin),f +a-a ; pu\
tchar(+10)) { for(int h= 1,i=1,j, k=0 ,l
=e[0]==32,m,n=0,o=c [0]== 32, p, q=0;d[q
];j=k,k=l,m=n,n=o,p=(j)+(k* 2)+(l =(i =
e[q]&&i) &&e[q +1]== 32,l*4)+(m* 8)+(
16* n)+(o =(h =c[q]&&h)&&c[q+1]==
32,o* (16+16))+0-0 +0, putchar(""
/*\ (|||) |/|/ / */".')|)\\\\\\\\'"
"" "|||" "|||" "|'" ")|)\\\\\\\\'/|/(/"
"(/'/|/\\|\\|'/|/(/(/'/|/\\|\\|"[d[q++]==
32?p:0]));}}/* typographic tributaries */

• Programs can be difficult to modify.

10

Effective Use of C
• Learn how to avoid pitfalls.
• Use software tools to make programs more reliable.
• Take advantage of existing code libraries.
• Adopt a sensible set of coding conventions.
• Avoid “tricks” and overly complex code.
• Stick to the standard.
• Try and adapt the good habits from programming in Java!

11

First C Program: Hello, World!
/**************
 * Purpose: My first C Program, prints: Hello, World!
 * Author: gtowell
 * Created: Jan 29, 2021
 * Modified: Feb 1, 2021 by gtowell
 **************/

#include <stdio.h>

int main(void) {
 printf(“Hello, World!.\n");
 return 0;
} // end of main()

• This program might be stored in a file named hello
• The file name doesn’t matter

• .c extension not required by Unix. Usually useful
• used by gcc to indicate language

12

Compilation Process

[xena@codewarrior cs246]$ gcc -lc -xc hello  
 
 
 
 
 
[xena@codewarrior cs246]$./a.out  
Hello, World!  
[xena@codewarrior cs246]$

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

13

-l “link” with the library c
-x compile with the language c

What is a.out?
What is is the weird “./“
Why not have “./“ is front of
gcc?

Compilation Process – GNU C Compiler
Unix$ mv hello hello.c
Unix$ gcc hello.c
Unix$./a.out  
Hello, World!  
Unix$ gcc -o hello hello.c  
  
 The “-o xxx” specifies the name of the executable  
 Unlike Java, this is directly executable
 what happens when you enter “java xxx”?
 gcc interprets the “.c” file extension to mean “use -lc -xc”  
 
 
Unix$./hello  
Hello, World!  
Unix$

14

Compilation Process
Compilation is a 3-step process

1. Preprocessing
Source code commands that begin with a # are preprocessed. E.g.,

#include <stdio.h>

2. Compiling
Source code is translated into object code (m/c language)
Single pass … function order matters!

3. Linking
All libraries/modules used by the program are linked to produce an executable
object code

Preprocessing is normally integrated into the compiler. Linking is done by a separate
program/command.

15

C Program Structure (for now)
directives

int main(void) {
 statements
}

16

#include <stdio.h>
int main(void) {
 printf(“Hello, World!.\n");
 return 0;
} // end of main()

• Before a C program is compiled, it is first edited by a
preprocessor.
• Commands intended for the preprocessor are called directives.
• <stdio.h> is a header containing information about C’s

standard I/O library.

main()

• The main() function is mandatory.
• main() is special: it gets called automatically when the

program is executed.
• main returns a status code; the value 0 indicates normal

program termination.
• If there’s no return statement at the end of the main

function, many compilers will produce a warning message.

17

Comments – Two styles /*…*/ or //
• Like Java

18

Another Program
(variables, assignment, formatted output)
File: small.c
#include <stdio.h>
int main(void) {
 int a, b, c;

 a = 24;
 b = 18;
 c = a + b;

 printf(“c = %d\n”, c);
} // main()

[xena@codewarrior cs246]$ gcc –o small small.c
[xena@codewarrior cs246]$./small
c = 42
[xena@codewarrior cs246]$

Unlike	java	“+”	does	NOT	concatenate	so printf("c= " + c + "\n"); does	not	work

19

Java
String.format

Printing Strings
• The statement
 printf("To C, or not to C: that is the question.\n”);
kin	to	Java System.out.print()

 could be replaced by two calls of printf:
 printf("To C, or not to C: ");
 printf("that is the question.\n");

• The new-line character can appear more than once in a string
literal:

 printf("Brevity is the soul of wit.\n --Shakespeare\n");

20

Printing the Value of a Variable
• %d works only for int variables; use %f to print a float variable

• By default, %f displays a number with six digits after the decimal point.

• To force %f to display p digits after the decimal point, put .p between
% and f.
• To print the line
 Profit: $2150.48
 use the following call of printf:
 printf("Profit: $%.2f\n", profit);
• There’s no limit to the number of variables that can be printed by a

single call of printf:
 printf("Height: %d Length: %d\n", height, length);

21

Unix Time!!!
• cd

• absolute path
• relative path
• ~

• ls
• flags: -l -a -r { -t -S }

• pwd
• more / less / cat

• cat > file
• man

• man 3 cFunc
• the	3	says	to	show	the	man	page	from	section	3	of	the	manual	

• section	3	contains	C	functions	
• Sadly man pages for C are NOT installed on powerpuff
• They are installed on macs!

22

23

24

Input
• scanf() is the C library’s counterpart to printf.
• Syntax for using scanf()

scanf(<format-string>, <variable-reference(s)>)

• Example: read an integer value into an int variable data.
 scanf("%d", &data); //read an integer; store into data

• The & is a reference operator. More on that later!

25

Reading Input
• Reading a float:
 scanf("%f", &x);

• "%f" tells scanf to look for an input value in float format
(the number may contain a decimal point, but doesn’t have
to).

26

Standard Input & Output Devices
• In Linux the standard I/O devices are, by default, the keyboard for

input, and the terminal console for output.

• Thus, input and output in C, if not specified, is always from the
standard input and output devices. That is,

printf() always outputs to the terminal console

scanf() always inputs from the keyboard

• Later, you will see how these can be reassigned/redirected to other
devices.

27

Program: Convert Fahrenheit to Celsius
• The c2f.c program prompts the user to enter a Fahrenheit

temperature; it then prints the equivalent Celsius
temperature.
• Sample program output:
 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

• The program will allow temperatures that aren’t integers.

28

Program: Convert Fahrenheit to Celsius
f2c.c
#include <stdio.h>

int main(void)
{
 float f, c;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &f);

 c = (f – 32) * 5.0/9.0;

 printf("Celsius equivalent: %.1f\n", c);

 return 0;
} // main() Sample program output:

 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

29

Improving ctof.c
Look at the following command:

c = (f – 32) * 5.0/9.0;

First, 32, 5.0, and 9.0 should be floating point values: 32.0, 5.0, 9.0

Second, by default, in C, they will be assumed to be of type double
Instead, we should write

c = (f – 32.0f) * 5.0f/9.0f;

What about using constants/magic numbers?

30

Defining constants - macros
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)

So we can write:

c = (f – FREEZING_PT) * SCALE_FACTOR;

When a program is compiled, the preprocessor replaces each macro by the value that
it represents.
During preprocessing, the statement

c = (f – FREEZING_PT) * SCALE_FACTOR;

will become

c = (f – 32.f) * 5.0f/9.0f;

This is a safer programming practice.
31

Program: Convert Fahrenheit to Celsius
ctof.c
#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)

int main(void)
{
 float f, c;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &f);

 c = (f – FREEZING_PT) * SCALE_FACTOR;

 printf("Celsius equivalent: %.1f\n", c);

 return 0;
} // main()

Sample program output:

 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

32

Input from the command line

33

#include <stdio.h>
#include <stdlib.h> // needed for atof

#define GALLONS_PER_LITER 0.2641
#define KILOMETERS_PER_MILE 1.609

int main(int argc, char const *argv[])
{
 if (argc < 2) {
 printf("Usage: %s number\n", argv[0]);
 printf(" where: number is a US style MPG estimate\n");
 return 0;
 }
 double mpg = atof(argv[1]);
 double lp100km = (1 / mpg) * (1 / GALLONS_PER_LITER) * (1 / KILOMETERS_PER_MILE) * 100;
 printf("%5.2f liters per 100km \n", lp100km);
 return 0;
}

Shooting yourself in the foot
• APL

◦ You shoot yourself in the foot and then spend all day figuring out how to do it in fewer characters.
◦ You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened.
◦ @#&^$%&%^ foot

• C
• You shoot yourself in the foot and then nobody else can figure out what you did.

Java
• You write a program to shoot yourself in the foot and put it on the Internet. People all over the world shoot themselves in the foot, and everyone leaves

your website hobbling and cursing.
• You amputate your foot at the ankle with a fourteen-pound hacksaw, but you can do it on any platform.

• Lisp
◦ You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you

shoot yourself in the appendage which holds the gun with which you shoot...
◦ You attempt to shoot yourself in the foot, but the gun jams on a stray parenthesis.

• Linux
◦ You shoot yourself in the foot with a Gnu.

Perl
• You separate the bullet from the gun with a hyperoptimized regexp, and then you transport it to your foot using several typeglobs. However, the program

fails to run and you can't correct it since you don't understand what the hell it is you've written.
• You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife.
• You shoot yourself in the foot and then decide it was so much fun that you invent another six completely different ways to do it.

Python
• You shoot yourself in the foot and then brag for hours about how much more elegantly you did it than if you had been using C or (God forbid) Perl.

◦

34

Identifiers
• Names for variables, functions, macros, etc. are called

identifiers.
• An identifier may contain letters, digits, and underscores, but

must begin with a letter or underscore:
 times10 get_next_char _done

 It’s usually best to avoid identifiers that begin with an
underscore.
• Examples of illegal identifiers:
 10times get-next-char

35

Identifiers
• C is case-sensitive: it distinguishes between upper-case and lower-

case letters in identifiers.
• For example, the following identifiers are all different:
 job joB jOb jOB Job JoB JOb JOB
• Many programmers use only lower-case letters in identifiers (other

than macros), with underscores inserted for legibility:
 symbol_table current_page name_and_address

• Other programmers use an upper-case letter to begin each word within
an identifier:

 symbolTable currentPage nameAndAddress
• C places no limit on the maximum length of an identifier.

36

Keywords
• The following keywords can’t be used as identifiers:
 auto enum restrict* unsigned
 break extern return void
 case float short volatile
 char for signed while
 const goto sizeof _Bool*
 continue if static _Complex*
 default inline* struct _Imaginary*
 do int switch
 double long typedef
 else register union

• Keywords (with the exception of _Bool, _Complex, and
_Imaginary) must be written using only lower-case letters.
• Names of library functions (e.g., printf) are also lower-case.

37

If and Switch statements in C
• A compound statement has the form
 { statements }

• In its simplest form, the if statement has the form
 if (expression) compound/statement

• An if statement may have an else clause:
 if (expression) compound/statement else compound/statement

• Most common form of the switch statement:
 switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
 }

38

Arithmetic Operators
• C provides five binary arithmetic operators:
 + addition
 - subtraction
 * multiplication
 / division
 % remainder

• An operator is binary if it has two operands.
• There are also two unary arithmetic operators:
 + unary plus
 - unary minus

39

Logical Expressions
• Several of C’s statements must test the value of an expression

to see if it is “true” or “false.”
• In many programming languages, an expression such as i < j

would have a special “Boolean” or “logical” type.
• In C, a comparison such as i < j yields an integer: either 0

(false) or 1 (true).

40

Relational Operators
• C’s relational operators:
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
• C provides two equality operators:
 == equal to
 != not equal to
• More complicated logical expressions can be built from simpler ones by

using the logical operators:
 ! logical negation
 && logical and
 || logical or

These operators produce 0 (false) or 1 (true) when used in expressions.

41

Logical Operators
• Both && and || perform “short-circuit” evaluation: they first

evaluate the left operand, then the right one.
• If the value of the expression can be deduced from the left operand

alone, the right operand isn’t evaluated.
• Example:
 (i != 0) && (j / i > 0)

 (i != 0) is evaluated first. If i isn’t equal to 0, then (j / i > 0) is
evaluated.
• If i is 0, the entire expression must be false, so there’s no need to

evaluate (j / i > 0). Without short-circuit evaluation, division by
zero would have occurred.

42

Relational Operators & Lack of Boolean
Watch out!!!
• The expression
 i < j < k

 is legal, but does not test whether j lies between i and k.
• Since the < operator is left associative, this expression is

equivalent to
 (i < j) < k

 The 1 or 0 produced by i < j is then compared to k.
• The correct expression is i < j && j < k.

43

Loops
• The while statement has the form
 while (expression) statement

• General form of the do statement:

 do statement while (expression) ;
• General form of the for statement:
 for (expr1 ; expr2 ; expr3) statement
 expr1, expr2, and expr3 are expressions.
• Example:
 for (i = 10; i > 0; i--)
 printf("T minus %d and counting\n", i);

• Variables can be declared within for
 for (int i = 0; i < n; i++)
 …

44

Acknowledgements
Some content from these slides is based on the book, C
Programming – A Modern Approach, By K. N. King, 2nd Edition, W.
W. Norton 2008.

Materials are also included from the lecture slides provided by
Prof. K. N. King. Thank You!

45

STOP!!

46

The printf Function
• The printf function must be supplied with a format string,

followed by any values that are to be inserted into the string during
printing:

 printf(string, expr1, expr2, …);

• The format string may contain both ordinary characters and
conversion specifications, which begin with the % character.

• A conversion specification is a placeholder representing a value to
be filled in during printing.
• %d is used for int values
• %f is used for float values

47

48

The printf Function
• Ordinary characters in a format string are printed as they appear in the

string; conversion specifications are replaced.
• Example:
 int i, j;
 float x, y;

 i = 10;
 j = 20;
 x = 43.2892f;
 y = 5527.0f;

 printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:
 i = 10, j = 20, x = 43.289200, y = 5527.000000

49

The printf Function
• Compilers aren’t required to check that the number of

conversion specifications in a format string matches the
number of output items.
• Too many conversion specifications:
 printf("%d %d\n", i); /*** WRONG ***/

• Too few conversion specifications:
 printf("%d\n", i, j); /*** WRONG ***/

50

The printf Function
• Compilers aren’t required to check that a conversion

specification is appropriate.
• If the programmer uses an incorrect specification, the program

will produce meaningless output:
 printf("%f %d\n", i, x); /*** WRONG ***/

51

Conversion Specifications
• A conversion specification can have the form %m.pX or %-m.pX,

where m and p are integer constants and X is a letter.
• Both m and p are optional; if p is omitted, the period that separates

m and p is also dropped.
• In the conversion specification %10.2f, m is 10, p is 2, and X is f.

• In the specification %10f, m is 10 and p (along with the period) is
missing, but in the specification %.2f, p is 2 and m is missing.

52

Conversion Specifications
• The minimum field width, m, specifies the minimum number of

characters to print.
• If the value to be printed requires fewer than m characters, it is right-

justified within the field.
• %4d displays the number 123 as •123. (• represents the space character.)

• If the value to be printed requires more than m characters, the field
width automatically expands to the necessary size.
• Putting a minus sign in front of m causes left justification.

• The specification %-4d would display 123 as 123•.

53

Conversion Specifications
• The meaning of the precision, p, depends on the choice of X,

the conversion specifier.
• The d specifier is used to display an integer in decimal form.
• p indicates the minimum number of digits to display (extra zeros are

added to the beginning of the number if necessary).
• If p is omitted, it is assumed to be 1.

54

Conversion Specifications
• Conversion specifiers for floating-point numbers:
 e — Exponential format. p indicates how many digits should appear after

the decimal point (the default is 6). If p is 0, no decimal point is
displayed.

 f — “Fixed decimal” format. p has the same meaning as for the e
specifier.

 g — Either exponential format or fixed decimal format, depending on the
number’s size. p indicates the maximum number of significant digits to be
displayed. The g conversion won’t show trailing zeros. If the number has
no digits after the decimal point, g doesn’t display the decimal point.

55

Program: Using printf to Format Numbers

• The tprintf.c program uses printf to display integers and
floating-point numbers in various formats.

56

 tprintf.c
 /* Prints int and float values in various formats */

 #include <stdio.h>

 int main(void)
 {
 int i;
 float x;

 i = 40;
 x = 839.21f;

 printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);
 printf("|%10.3f|%10.3e|%-10g|\n", x, x, x);

 return 0;
 }

• Output:
 |40| 40|40 | 040|
 | 839.210| 8.392e+02|839.21 |

57

Escape Sequences
• The \n code that used in format strings is called an escape

sequence.
• Escape sequences enable strings to contain nonprinting

(control) characters and characters that have a special
meaning (such as ").
• A partial list of escape sequences:

Alert (bell) \a

Backspace \b
New line \n
Horizontal tab \t

58

Escape Sequences
• A string may contain any number of escape

sequences:
 printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

• Executing this statement prints a two-line
heading:

 Item Unit Purchase
 Price Date

59

Escape Sequences
• Another common escape sequence is \", which represents the
" character:

 printf("\"Hello!\"");
 /* prints "Hello!" */

• To print a single \ character, put two \ characters in the
string:

 printf("\\");
 /* prints one \ character */

60

The scanf Function
• scanf reads input according to a particular format.
• A scanf format string may contain both ordinary characters

and conversion specifications.
• The conversions allowed with scanf are essentially the same

as those used with printf.

61

The scanf Function
• In many cases, a scanf format string will contain only

conversion specifications:
 int i, j;
 float x, y;

 scanf("%d%d%f%f", &i, &j, &x, &y);

• Sample input:
 1 -20 .3 -4.0e3

 scanf will assign 1, –20, 0.3, and –4000.0 to i, j, x, and y,
respectively.

62

The scanf Function
• When using scanf, the programmer must check that the

number of conversion specifications matches the number of
input variables and that each conversion is appropriate for the
corresponding variable.
• Another trap involves the & symbol, which normally precedes

each variable in a scanf call.
• The & is usually (but not always) required, and it’s the

programmer’s responsibility to remember to use it.

63

How scanf Works
• scanf tries to match groups of input characters with

conversion specifications in the format string.
• For each conversion specification, scanf tries to locate an

item of the appropriate type in the input data, skipping blank
space if necessary.
• scanf then reads the item, stopping when it reaches a

character that can’t belong to the item.
• If the item was read successfully, scanf continues processing the rest

of the format string.
• If not, scanf returns immediately.

64

How scanf Works
• As it searches for a number, scanf ignores white-space

characters (space, horizontal and vertical tab, form-feed,
and new-line).

• A call of scanf that reads four numbers:
 scanf("%d%d%f%f", &i, &j, &x, &y);

• The numbers can be on one line or spread over several
lines:

 1
 -20 .3
 -4.0e3

• scanf sees a stream of characters (¤ represents new-line):
 ••1¤-20•••.3¤•••-4.0e3¤
 ssrsrrrsssrrssssrrrrrr (s = skipped; r = read)

• scanf “peeks” at the final new-line without reading it.

65

How scanf Works
• When asked to read an integer, scanf first

searches for a digit, a plus sign, or a minus sign;
it then reads digits until it reaches a nondigit.
• When asked to read a floating-point number,
scanf looks for
• a plus or minus sign (optional), followed by
• digits (possibly containing a decimal point), followed

by
• an exponent (optional). An exponent consists of the

letter e (or E), an optional sign, and one or more
digits.

• %e, %f, and %g are interchangeable when used
with scanf.

66

How scanf Works
• When scanf encounters a character that can’t be part of the

current item, the character is “put back” to be read again
during the scanning of the next input item or during the next
call of scanf.

67

How scanf Works
• Sample input:
 1-20.3-4.0e3¤

• The call of scanf is the same as before:
 scanf("%d%d%f%f", &i, &j, &x, &y);

• Here’s how scanf would process the new input:
• %d. Stores 1 into i and puts the - character back.
• %d. Stores –20 into j and puts the . character back.
• %f. Stores 0.3 into x and puts the - character back.
• %f. Stores –4.0 × 103 into y and puts the new-line character back.

68

Ordinary Characters in Format Strings
• When it encounters one or more white-space characters in a

format string, scanf reads white-space characters from the
input until it reaches a non-white-space character (which is
“put back”).
• When it encounters a non-white-space character in a format

string, scanf compares it with the next input character.
• If they match, scanf discards the input character and continues

processing the format string.
• If they don’t match, scanf puts the offending character back into the

input, then aborts.

69

Ordinary Characters in Format Strings
• Examples:
• If the format string is "%d/%d" and the input is •5/•96, scanf

succeeds.
• If the input is •5•/•96 , scanf fails, because the / in the format

string doesn’t match the space in the input.

• To allow spaces after the first number, use the format string
"%d /%d" instead.

70

Confusing printf with scanf
• Although calls of scanf and printf may appear similar, there

are significant differences between the two.
• One common mistake is to put & in front of variables in a call

of printf:
 printf("%d %d\n", &i, &j); /*** WRONG ***/

71

Confusing printf with scanf
• Incorrectly assuming that scanf format strings should

resemble printf format strings is another common error.
• Consider the following call of scanf:
 scanf("%d, %d", &i, &j);
• scanf will first look for an integer in the input, which it stores in the

variable i.
• scanf will then try to match a comma with the next input character.
• If the next input character is a space, not a comma, scanf will

terminate without reading a value for j.

72

Confusing printf with scanf
• Putting a new-line character at the end of a scanf format

string is usually a bad idea.
• To scanf, a new-line character in a format string is equivalent

to a space; both cause scanf to advance to the next non-
white-space character.
• If the format string is "%d\n", scanf will skip white space,

read an integer, then skip to the next non-white-space
character.
• A format string like this can cause an interactive program to

“hang.”

73

Program: Adding Fractions
• The addfrac.c program prompts the user to enter two

fractions and then displays their sum.
• Sample program output:
 Enter first fraction: 5/6
 Enter second fraction: 3/4
 The sum is 38/24

74

addfrac.c
/* Adds two fractions */

#include <stdio.h>

int main(void)
{
 int num1, denom1, num2, denom2, result_num, result_denom;

 printf("Enter first fraction: ");
 scanf("%d/%d", &num1, &denom1);

 printf("Enter second fraction: ");
 scanf("%d/%d", &num2, &denom2);

 result_num = num1 * denom2 + num2 *denom1;
 result_denom = denom1 * denom2;
 printf("The sum is %d/%d\n",result_num, result_denom)

 return 0;
}

75

