
1

CMSC 245: Principles of Programming Languages
Lab#8: Doing Leonardo Fibonacci’s Numbers in Python – Using Iterators & Generators!

The Fibonacci Series is defined as shown below:

𝐹𝐹(1) = 1
𝐹𝐹(2) = 1
𝐹𝐹(𝑛𝑛) = 𝐹𝐹(𝑛𝑛 − 2) + 𝐹𝐹(𝑛𝑛 − 1)

Thus, you get the series:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

To compute the nth Fibonacci number, you can write a recursive Python function as shown
below:

fibr(n) - Compute the nth Fibonacci number, recursively
def fibr(n):
 if n==1 or n==2:
 return 1
 else:
 return fibr(n-2) + fibr(n-1)

Enter and run this function (please, use python-3.X) to print out some of the values above.
Then, try:

>>> fibr(20)
6765
>>> fibr(30)
832040
>>> fibr(40)
102334155
>>> fibr(50)

You will notice that computing fibr(40), or fibr(50) starts to take a long time! You
also know why this is so: there are too many recursive calls O(2n) (is a lose upper bound).
You may have to kill the last call since it takes so much time. We need to speed this up!

One way to do this is to write an iterative version. Go ahead and think about it. Try writing
one yourself.

2

OK, here is one version:

fibi(n) - Compute the nth Fibonacci number, iteratively
def fibi(n):
 if n==1 or n==2:
 return 1
 fibMinus2 = 1
 fibMinus1 = 1
 i = 3
 while (i <= n):
 fibI = fibMinus2 + fibMinus1
 fibMinus2 = fibMinus1
 fibMinus1 = fibI
 i = i + 1
 return fibI

And, some runs:

>>> fibi(20)
6765
>>> fibi(30)
832040
>>> fibi(40)
102334155
>>> fibi(50)
12586269025
>>> fibi(60)
1548008755920

It didn't take that long for the computer to compute the 50th, or 60th Fibonacci number, did
it? Because we are not using any stack space. This is a simple iteration. And runs in time
proportional to n – the number you are trying to compute.

Iterators in Python

Iterators are 'hidden' features in Python that you have used quite often. For example,

>>> numbers = [1,2,3,4,5]
>>> for i in numbers:
 print(i)
1
2
3
4
5

In the above, the list (sequence), numbers already have an iterator defined for it. All
sequences in Python do. As do many other objects that you have used (files, e.g.). The

3

above is making use of the iterator for lists. You can explicitly create an iterator and use it:

>>> i = iter(numbers)
>>> next(i)
1
>>> next(i)
2
>>> next(i)
3
>>> next(i)
4
>>> next(i)
5

That is, by passing the list, numbers to iter() (which is a predefined Python function),
you are creating a new iterator object. This can only be done if the object provided to
iter() implements the __iter__() and __next__() methods (which a list does).
Then, as shown above, after the creation of the iterator (using iter()), subsequent calls
using next() to the object returned by iter() will return the next element in the
sequence. What happens when, after the last call to next (shown above), we try to call
next() again? Remember, the list only had 5 elements. Try it and you will see this:

>>> next(i)
5
>>> next(i)
Traceback (most recent call last):
 File "<pyshell#46>", line 1, in <module>
 next(i)
StopIteration
>>>

A StopIteration exception is raised because there are no more objects to be returned.
That is, the iteration is over. Thus, when you do the following iteration:

>>> l = [1,2,3,4,5]
>>> for i in l:
 print(i)
1
2
3
4
5

The iteration stops because of the exception. All of this is 'hidden' under the Python hood!

Now, we can learn to make use of it for our own purposes. Any object in Python can be
made to be iterable (as long as it makes sense to do so) by defining two methods for it:
__iter__(), and __next__().

4

PowerOfTwo - Iterable object to compute powers of 2
class PowerOfTwo:
 def __init__(self, max = 0):
 self.max = max

 def __iter__(self):
 self.n = 0
 return self

 def __next__(self):
 if self.n <= self.max:
 result = 2 ** self.n
 self.n += 1
 return result
 else:
 raise StopIteration

Study the above class carefully. First look at the constructor: it takes an argument. This
argument defines the limit on how big a power of 2 it will compute. For example, you can
create an iterator object that computes powers of 2 up to 3:

>>> i = PowerOfTwo(3)
>>> j = iter(i)
>>> next(j)
1
>>> next(j)
2
>>> next(j)
4
>>> next(j)
8

Or, you can simply do:

>>> for i in PowerOfTwo(4):
 print(i)
1
2
4
8
16
>>>

That is, you have just defined an iterable object that returns subsequent values in a series
defined by you!

5

And so, speaking of series, let's apply this to our Fibonacci series:

fibS - Defines a Fibonacci iterator
class fibS:
 def __init__(self, max=1):
 self.max=max
 self.fibMinus2=1
 self.fibMinus1=1
 self.n=1

 def __next__(self):
 if self.n <= self.max:
 self.fibOld = self.fibMinus2
 self.fibN = self.fibMinus2 + self.fibMinus1
 self.fibMinus2 = self.fibMinus1
 self.fibMinus1 = self.fibN
 self.n += 1
 return self.fibOld
 else:
 raise StopIteration

 def __iter__(self):
 return self

As before, please study the above carefully and then try it:

>>> fib = fibS(50)
>>> for i in fib:
 print(i)
1
1
2
3
5
8
13
21
34
…
1134903170
1836311903
2971215073
4807526976
7778742049
12586269025
>>>

6

Generators

Given that defining an iterator object requires defining a new class with the __next__()
and __iter__() functions, sometimes it is convenient to create iterators on the fly. For
that purpose, Python has generators- they are functions that generate iterators!

Generators are functions. Instead of using a return statement to return a result, they use
the yield statement in its place. Moreover, after the function returns a value (i.e. yields a
value) it 'remembers' its state. So that, in the next iteration, it picks up right after the yield
statement. Confusing? Well, look at the generator below:

fibg() - A generator for Fibonacci sequence
def fibg():
 fibMinus2 = 1
 fibMinus1 = 1

 while True:
 fibOld = fibMinus2
 fibI = fibMinus2 + fibMinus1
 fibMinus2 = fibMinus1
 fibMinus1 = fibI

 if fibOld > 6000000:
 return

 yield fibOld

We are stopping the iteration (by returning from the function) after the number computed
becomes greater than 6 million. Once written you can use a generator just like an iterator:

>>> for i in fibg():
 print(i)
1
1
2
3
…
3524578
5702887

7

Task#1: Modify the generator above to stop iteration after computing the nth Fibonacci
number: for example:

>>> for i in fibg2(5):
 print(i)
1
1
2
3
5

Task#2: Write a generator primes(n) that produces the first n prime numbers:

>>> x = 1
>>> for i in primes(100):
 print(f"x:\t{i}")
 x += 1
1: 2
2: 3
3: 5
…
99: 523
100: 541

