
1

CS 245: Principles of Programming Languages
Lab#7: OOP in Python

In this lab, we will learn how to use the OOP features of Python. Just like in Java, Python
objects are defined using a class:

class <name>:
 <constructor(s)>
 <print method>
 <Accessors>
 <operations>

The class definition

To define a class for fraction, we do the following:

Define a fraction class
A fraction is represented as numerator/denominator
The fraction is always kept normalized i.e.
The fraction 4/6 will be represented as 2/3

class fraction:

Constructor(s): In Python, constructors are defined using the function
__init(self, <args>)__. self is always the first argument. It refers to the current
object (similar to this in Java). Thus, the constructor for fraction will be defined as:

 # Constructor
 def __init__(self, n, d):
 self.n = n # numerator
 self.d = d # denominator
 self.normalize() # normalized

self.n and self.d are the two fields of fraction class. self.normalize() is used to
normalize the fraction (i.e. convert a fraction like 4/6 to 2/3). It is defined as a method of
the fraction class:

 def normalize(self):
 """ Normalizes the fraction """
 g = gcd(self.n, self.d)
 self.n = self.n // g
 self.d = self.d // g
 return self

The gcd() function is defined as a utility function outside the fraction class. We've
already written this before, here it is:

2

Utility function, not in the class
def gcd(a, b):
 """ Returns the greatest common divisor of a and b """
 if b == 0:
 return a
 else:
 return gcd(b, a % b)

Print Method: In Python, the print method is defined using the __str__(self)
function. It is similar to the Java toString() method:

 def __str__(self):
 # print method to print a fraction as "n/d"
 return f"{self.n}/{self.d}"

Accessors: Accessor methods provide access to the fields of the fraction. Here we have
two:

 # Accessors, in case they are needed
 def n(self):
 return self.n

 def d(self):
 return self.d

Operations: For this fraction class, we will define three operations: evaluate(),
add(), and multiply():

 def evaluate(self):
 """ Returns the float value of the fraction """
 return (float(self.n))/self.d

 def add(self, other):
 """ Adds another fraction to this fraction """
 if self.d == other.d:
 selfn = self.n + other.n
 else:
 self.n = self.n * other.d + other.n * self.d
 self.d = self.d * other.d
 self.normalize()

 def multiply(self, other):
 """ Multiplies another fraction to this fraction """
 self.n = self.n * other.n
 self.d = self.d * other.d
 self.normalize()

3

Note: add() and multiply() are implemented so the fraction object is mutable.
What would it take to make it immutable?

Putting it all together: Here then is the complete definition of a fraction class, as
presented above. You can save it in a file: fraction.py

File: fraction.py
Define a fraction class
A fraction is represented as numerator/denominator
The fraction is always kept normalized i.e.
The fraction 4/6 will be represented as 2/3
class fraction:
 # Constructor
 def __init__(self, n, d):
 self.n = n # numerator
 self.d = d # denominator
 self.normalize() # normalized

 def __str__(self):
 # print method to print a fraction as "n/d"
 return f"{self.n}/{self.d}"

 # Accessors, in case they are needed
 def n(self):
 return self.n

 def d(self):
 return self.d

 def evaluate(self):
 """ Returns the float value of the fraction """
 return (float(self.n))/self.d

 def add(self, other):
 """ Adds another fraction to this fraction """
 if self.d == other.d:
 selfn = self.n + other.n
 else:
 self.n = self.n * other.d + other.n * self.d
 self.d = self.d * other.d
 self.normalize()

 def multiply(self, other):
 """ Multiplies another fraction to this fraction """
 self.n = self.n * other.n
 self.d = self.d * other.d
 self.normalize()

4

 def normalize(self):
 """ Normalizes the fraction """
 g = gcd(self.n, self.d)
 self.n = self.n // g
 self.d = self.d // g
 return self

Utility function, not in the class
def gcd(a, b):
 """ Returns the greatest common divisor of a and b """
 if b == 0:
 return a
 else:
 return gcd(b, a % b)

Using the fraction class: A client Python program can be created (file use.py). The file
fraction.py is now a module. One can import from a module in a couple of different
ways:

from <module> import *

The above imports everything (denoted by *) defined in <module>. Thus, we could define
use.py as:

Fil: use.py
from fraction import *

f1 = fraction(6, 9)
print("f1 = ", f1)
f2 = fraction(7, 11)
print("f2 = ", f2)
f3 = fraction(4, 6)
print("f3 = ", f3)

f2.add(f1)
print("f2 = f2 + f2 = ", f2)

f3.multiply(f1)
print("f3 = f3 * f1 = ", f3)

Save and run the file, use.py and you should see the following output:

f1 = 2/3
f2 = 7/11
f3 = 2/3
f2 = f2 + f2 = 43/33
f3 = f3 * f1 = 4/9

5

Alternately, and this is a better approach (why?), you can do the import as shown below:

import fraction

f1 = fraction.fraction(6, 9)
print("f1 = ", f1)
f2 = fraction.fraction(7, 11)
print("f2 = ", f2)
f3 = fraction.fraction(4, 6)
print("f3 = ", f3)

f2.fraction.add(f1)
print("f2 = f2 + f2 = ", f2)

f3.fraction.multiply(f1)
print("f3 = f3 * f1 = ", f3)

Try it.

Python Abstract Data Types? Unlike Java, where one can hide away the details in a class by
declaring them private, there is no such facility in Python. All classes in Python are public!
This implies that one can directly access any component of a class from any client. While
this is possible, we encourage following good programming practice and try not to do this.

Testing individual Modules: As you learned in the last lab, you can use the __name__
variable to detect if a module is being executed as the main program. This is useful since
you can then write testing code in the module itself. Just add the following at the bottom
of the fraction.py file:

if __name__ == '__main__':
 f1 = fraction(6, 9)
 print("f1 = ", f1)
 f2 = fraction(7, 11)
 print("f2 = ", f2)
 f3 = fraction(4, 6)
 print("f3 = ", f3)

 f2.add(f1)
 print("f2 = f2 + f2 = ", f2)

 f3.multiply(f1)
 print("f3 = f3 * f1 = ", f3)

Go ahead and try it.

