
1

CMSC 245 – Principles of Programming Languages
Lab#2: Python Basics

Structure of a Python Program

The general structure of a Python program is shown below:

1 <imports>
2
3 <function definitions>
4
5 def main():
6 <code for main() goes here>
7
8 main()

Here are some salient features:

• Line 1: All imports go here (for example, math, random, etc).
• Line 3: All functions are defined here.
• Lines 5-6: Defines the main() function. Technically, Python does not require a main()

function. This is just to transfer you over coming from languages like Java, C, etc.
• Line 8: Where the execution of your program starts is dictated by this function call.

Types and Operators

Python provides several built-in basic data types: numbers (integers, floating-point numbers),
Booleans, strings, and collections (list, tuple, set, dict):

• Numbers-integers: The built-in type int represents integers that are represented in 32-bit 2’s
complement. int is the type you will use for most common applications. The standard
operators defined on integers are: +, -, *, /, and %. The operator ** is the exponentiation
operator. It is a binary operator, written as x ** y (i.e. it computes 𝑥𝑥𝑦𝑦).

• Numbers-floating point numbers: The built-in type float is used for floating point values. The
standard operators defined on floating-point numbers are: +, -, *, /, **.

• Booleans: The type bool is used to define Boolean values (False, True). The three standard
logical operators available are: and (and), or (or), and not (not). Besides these, the
comparison operators (==, !=, >, >=, <, <=) also yield Boolean values. Python also has an in
operator that tests for membership. For example,

evens = [2,4,6,8,10]
2 in evens -> returns True
3 in evens -> returns False

2

• Strings: The type str is used to define strings. String literals are written enclosed in singe,
double, or triple quotes: ‘Bryn Mawr’, "Bryn Mawr", ‘‘‘Bryn Mawr’’’, """Bryn
Mawr""", etc. Triple quotes are generally reserved for multi-line quotes. The operations on
string type include: + (concatenation), s[i] (i-the character of a string s), and len(s) for
finding out the length of a string s. Strings in Python can also be compared using <, <=, >, >=,
==, and !=.

• Collections: These represent a collection of values and can be a list, tuple, set, or dict
(dictionary).

colleges = [("Bryn Mawr", "Haverford", "Swarthmore"] # list
data = [12, 54, 367, 89, -1, 23] # list

Lists can be indexed (colleges[0], data[3]), and are changeable (colleges[1] =
“Villanova”, data[2] = 99).

person = ("Deepak", "Kumar", 2, "CMSC245", "CMSC325") # tuple

Like lists, tuples can be indexed (person[2]).

primes = {2, 3, 5, 7, 9} # set of int

Sets cannot be indexed, are unordered, and are unchangeable. Sets do not contain any
duplicates. Lists, tuples, and sets can contain a mix of values of any type.

Dictionary
namesDictionary = {1: "uno", 2: "dos", 3: "tres", 4: "quatro"}

Dictionary contains a bunch of key:value pairs. A dictionary can be indexed using a key
(namesDictionary[3] = "tres"). Keys and values can be of any type.

Variables and Declarations

Variable names: All variable names must start with a letter, including _ (underscore), and may contain
letters, numbers, or _ (underscore).

Scope: Variables can be used anywhere in the program without first declaring them. Python uses
lexical scoping. A variable is visible after it is defined, in the block that it is defined, and available in any
enclosing blocks. In Python, a variable is a container of value(s) of any type. That it, it could be assigned
values of different types in different places in a program (though this is not a good practice!).

Some unusual ways variables can be used:

3

1. Assigning multiple variables at once

i, j = 23, 42
f, s = 3.1415, "Bryn Mawr"

2. Swapping two variables

i, j = j, i

Exchanges the values of i and j.

3. One can assign multiple variables from a list or a tuple (see below for lists, tuples)

a, b, c = [31, 23, 26]
w, x, y, z = ("Bryn Mawr", "19010", 32, 89)

4. Type of a variable: In Python you can query the type of a vriable.

type(w) # str
type(z) # int

Control Structures

• Assignment: <var> = <expression>

area = width * height

• Multiple Assignment:
<var1>, <Var2>, …, <varN> = <expr1>, <expr2>, …, <exprN>
<var1>, <Var2>, …, <varN> := <expr1>, <expr2>, …, <exprN>

n, m := 10, 20

n and m are initialized to 10 and 20, respectively.

Multiple assignment can also be used to swap two variables:

n, m = n, n

The above swaps the contents of n and m.

4

• Conditional Statements- If
There are several forms of if-statements in Python:

if <condition>: if <condition>:
 <statement(s)> <statement(s)>
 else:

 <statement(s)>

 max = b if a > b
 if a > b: max = a
 max = a else:
 max = b

In Python if- statements, you do not have to surround the <condition> with parentheses (),
but you can. However, a colon (:) is used to indicate the start of a block. Indentation below that
dictates what is/isn’t in the block. Additionally, for nested if statements, we use a special
keyword (elif):

if <condition>:
 <statement(s)>
elif <condition>:
 <statement(s)
elif <condition>:
 <statement(s)
…
else:
 <statement(s)>

• Conditional Statements- match/case

match <expression>:
 case <expression1>:
 <statement(s)>
 case <expression2>:
 <statement(s)>
 …
 case _: <statement(s)> # default case

5

match month:
 case 1 | 3 | 5 | 7 | 8 | 10 | 12:
 daysInMonth = 12
 case 4 | 6 | 9 | 11:
 daysInMonth = 30
 case 2:
 if (leapYear(year):
 daysInMonth = 29
 else:
 daysInMonth = 28
 case _: print(f"Illegal value for month: {month}")

The <expression> in switch is optional. And, cases can refer to any variable in the current
scope (see below). Case expressions can be any value, or an expression (see below). There is no
break statement required (as in C, C++, Java, etc.). Only the case selected is executed.

import random
r = random.random() // generates a random float in [0.0..1.0)
match r:
 case r if r < 0.5:
 outcome = ‘HEADS’
 case r if r >= 0.5:
 outcome = ‘TAILS’

• Loops- for
The general form of a for-statement is:
for <var> in <sequence object>:
 <statements>

<var> is a loop-control variable. <sequence object> (technically called iterable object). A
sequence object could be a list (like [1,2,3,4], or a string (like “Bryn Mawr”), or any other
sequence object (usually user-defined). The built-in range() function (technically a sequence
object!) has many forms. In the simplest case it returns a sequence of numbers in [0..n).

for i in range(n):
 sum += i

6

• Loops- while
The while-loop has the following syntax:
while <condition>:
 <statement(s)>

For example:

while a != b:
 if a > b:
 a = a – b
 else:
 b – b – a

All loops can use the continue and break statements to skip to the next iteration of the loop,
or to exit the loop, respectively.

Exercises

1. The Notorious FizzBuzz Problem: Write a program that prints numbers from 1 to 100. However, for
numbers that are multiples of three it prints the word “Fizz” instead of the number, for multiples of
five, it prints “Buzz”. And, for numbers that are multiples of both three and five, it prints “FizzBuzz”.

2. Write two programs that simulate the following:

• rolls one six-sided die 100 million times and computes the empirical probability of getting a 6.
• rolls of two six-sided dice 100 million times and computes the empirical probability of getting a

sum of 7.

When completed:

Send an e-mail to your instructor indicating you have completed ALL parts of the lab.

