

Instructor: Deepak Kumar Office: Room 202 PSB Office Hours: TBA Lectures: Tue-Thu 12:55p to 2:15p Lecture Room: 245 Park Science Building Labs: Tuesdays from 2:25p to 3:45p (starts next week) Lab Room: 231 Park Science Building Class Website: https://cs.brynmawr.edu/Courses/cs240/Spring2024/

3

LEARNING OUTCOMES

- Describe the major components of a modern computer (CPU, Memory, I/O) and how they are implemented and interact in hardware.
- Understand how programs and data are represented in hardware, how instructions are executed, and how data is stored in and retrieved from memory.
- Design circuits to implement Boolean functions and basic storage/memory constructs using digital logic.
- The von Neumann Model
- Relate the behavior of high-level languages like C or Java to the underlying low-level assembly language.

CMSC 240 Principles of Computer Organization

5

5

TOPICS

- What is a Computer?
- Instruction Set Architecture (ISA)
- Bits, Data Types, and Operations
- The von Neumann Model
- The LC3 ISA
- Programming in Assembly using LC3 ISA
- Subroutines and the Stack
- I/O Operations: Service Routines, Traps and Interrupts
- Memory Hierarchy & Caching
- Non-von Neumann Architectures

CMSC 240 Principles of Computer Organization

MY ROLE

- Create educational opportunities for you to achieve the learning outcomes.
- Assess your progress and provide timely feedback
- Provide support so you can successfully complete the course.

CMSC 240 Principles of Computer Organization

7

7

YOUR RESPONSIBILITIES

- Put in the effort
- Attend all classes and labs (let me know if you are going to miss any)
- Follow the rules and guidelines in the class website
- Stay connected
 - Check the class website for schedule, updates, readings, and assignments
 - Do the readings as and when they are assigned. This is a key to success.
 - Be familiar with the main concepts before every class meeting
 - Ask for help when you need it!

CMSC 240 Principles of Computer Organization

IMPORTANT DATES & EVALUATION

Important Dates	Activity
January 23	First Class Meeting
•	J
February 20	Exam 1
April 2	Exam 2
May 2	Exam 3

Assessments	Weight
Exam 1	20%
Exam 2	20%
Exam 3	20%
Assignments	30%
Labs	10%

CMSC 240 Principles of Computer Organization

۵

THIS IS ALSO A COMPUTER

FRONTIER

World's Fastest Computer (2023)
Oak Ridge National Labs, TN
~50,000 Processors
Size of two tennis courts
Costs \$600 million
Can execute ~1 ExaFLOP (10¹⁸ FLOPS)

MSC 240 Principles of Computer Organizatio

13

BABBAGE'S DIFFERENCE ENGINE#2 (1832, 2002)

See video at: https://youtu.be/XSkGY6LchJs?si=GzWuDh9yPtsW9DBL

CMSC 240 Principles of Computer Organization

15

ENIAC FEBRUARY 16, 1946 (U. PENN) See video at: https://youtu.be/XSkGY6LchJs?si=GZWuDh9yPtsW9DBL

See at: Moore School Building, Corner of 34th & Walnut, Philadelphia.

LEVELS OF TRANSFORMATION Problems Algorithms Language Machine (ISA) Architecture Microarchitecture Circuits Devices CMSC 240 Principles of Computer Organization 23

LEVELS OF TRANSFORMATION

PROBLEM

Compute the square root of a given number, a.

A SOLUTION

To compute the square root $x = \sqrt{a}$ do the following:

- 1. Start with some guess $x_1 > 0$
- 2. Compute a sequence of guesses x_1 , x_2 , ..., x_n using the equation

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

until the numbers produced converge.

CMSC 240 Principles of Computer Organization

35

35

Devices

LEVELS OF TRANSFORMATION

ALGORITHM

- 1. To compute \sqrt{a}
- 2. Start with some guess $x_i=1$. This is our initial guess.
- 3. Compute the next guess $x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right)$
- 4. If $x_{i+1} \neq x_i$

Set x_i to be same as x_{i+1}

And then repeat from Step 3.

Otherwise, because $x_{i+1} = x_i$, they have converged.

Therefore, $\sqrt{a} = x_{i+1}$

CMSC 240 Principles of Computer Organization

36

LEVELS OF TRANSFORMATION

ALGORITHM

- 1. To compute \sqrt{a}
- 2. Start with some guess $x_i = 1$. This is our initial guess.
- 3. Compute the next guess $x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right)$
- 4. If $x_{i+1} \neq x_i$ Set x_i to be same as x_{i+1} And then repeat from Step 3.

Otherwise because x_{i+1} = x_i , they have converged. Therefore, \sqrt{a} = x_{i+1}

Definition:

An algorithm is a *precise*, *unambiguous*, and *effective* procedure.

CMSC 240 Principles of Computer Organization

3

37

Problems Algorithms Language Machine (ISA) Architecture Microarchitecture Circuits Devices

LEVELS OF TRANSFORMATION

PROGRAM

```
double sqrt (double a) {
   if (a <= 0) return 0;

   double x0 = 1;
   double x1 = (x0 + a/x0)/2.0;

   while (x0 != x1) {
      x0 = x1;
      x1 = (x1 + (a/x1))/2.0;
   }
   return x1;
} // sqrt()</pre>
```

CMSC 240 Principles of Computer Organization

