CMSC B240 Computer Organization - Spring 2024

Lab Activity \#4: Combinational Logic Circuits

Question \#1

Recall that a multiplexer, or "mux", is a circuit that has 2^{N} data input lines, and uses the value represented by the N select lines to choose which data line to produce as its single output.

Assume you have a 2-way mux (i.e., a mux with two data lines, one select line, and one output) as an individual component. First, complete the table with the output for each input combination:

Data-1	Data-0	Select	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

How could you combine some number of 2-way muxes to create a 4-way mux, i.e. one that has four data lines, two select lines, and one output?

Using a representation like this for your 2-way mux:

Out
draw the circuit diagram for a 4-way mux. You may use NOT, OR, and AND gates as needed, but should attempt to design this circuit using only a combination of 2-way muxes.

CMSC B240 Computer Organization - Spring 2024

Lab Activity \#4: Combinational Logic Circuits

Question \#2

A demultiplexer, or "demux", is similar to a mux but works in the opposite direction: it has one data line, N select lines, and 2^{N} output lines: the selected output line equals the data line, and the rest are 0 .

Complete the truth table for a 2-way demux, i.e. a demux with $\mathrm{N}=2$.

S-1	S-0	Data	Out-0	Out-1	Out-2	Out-3
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

CMSC B240 Computer Organization - Spring 2024
 Lab Activity \#4: Combinational Logic Circuits

Question \#3

Consider a computer system that has a 32-bit address space and 2-byte addressability. How much addressable memory does this system have?

Question \#4

Consider a computer system that has 8GB of addressable memory and a 32-bit address space, and assume each instruction is 16 bits long (remember, instructions are stored in memory along with data). How many addresses are required to hold one instruction in this system?

Question \#5

Consider a memory system with the following design:

- When data is read from memory, it uses 16 multiplexers to get each of the bits
- Each of the multiplexers has 24 select lines
- The same 24 select lines are used to control each of the 16 multiplexers

How many bytes of memory can this system store in total?

