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Question #1 
There are 26 characters in the alphabet we use for writing English.  
 
1.1) What is the smallest number of bits needed to give each character a unique bit pattern? 
 
We would need ceiling(log226) = 5 bits to represent all 26 characters, since 5 bits can represent 
up to 32 different values. 
 
 
 
1.2) How many bits would we need to distinguish between upper- and lowercase versions of all 
26 characters? 
 
If we had upper- and lowercase versions, we’d have 52 characters, so we’d need ceiling(log252) 
= 6 bits. Another way to think of this is that if we had twice as many things to represent, we 
would need one additional bit. 
 
 
 
Question #2 
A collection of 8 bits is known as a “byte”. Java has a “byte” datatype that is stored as an 8-bit 
two’s complement binary number. What is the largest value that can be stored in a Java “byte”? 
 
The largest value would be 01111111, which is 27 - 1, or 127. 
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Question #3 
Convert the following 2's complement binary numbers to decimal. 
 
3.1) 00100001 
 
This is positive since it starts with a 0, so we just need to calculate the magnitude: 
25 + 20 = 32 + 1 = 33 
 
 
 
 
3.2) 01011010 
 
As above, we just need to calculate its magnitude, which would be 
26 + 24 + 23 + 21 = 64 + 16 + 8 + 2 = 90 
 
 
 
 
 
 
3.3) 10011001 
 
This is negative since it starts with a 1, so we need to do the following to determine the 
magnitude: 

● Subtract 1: 10011001 - 1 = 10011000 
● Flip the bits: 10011000 → 01100111 
● Now treat this as an unsigned int to get the magnitude: 01100111 → 26 + 25 + 22 + 21 + 

20 = 64 + 32 + 4 + 2 + 1 = 103 
● So this is -103 

 
 
3.4) 11111111 
 
This is also negative (starts with 1) so to determine the magnitude we need to: 

● Subtract 1: 11111111 - 1 = 11111110 
● Flip the bits: 11111110 → 00000001 
● So this is -1 

 
 
 
 
 
 



CMSC B240 Computer Organization - Spring 2024                     Lab 1: Binary Numbers 
 

3 
 

Question #4 
Convert the following decimal numbers to 8-bit 2's complement binary numbers. 
4.1) 77 
This is positive so we only need to get the magnitude as an 8-bit number. 
77 % 2 = 1 → _ _ _ _ _ _ _ 1 
77 / 2 = 38 
38 % 2 = 0 → _ _ _ _ _ _ 0 1 
38 / 2 = 19 
19 % 2 = 1 → _ _ _ _ _ 1 0 1   
19 / 2 = 9 
9 % 2 = 1 → _ _ _ _ 1 1 0 1 
9 / 2 = 4 
4 % 2 = 0 → _ _ _ 0 1 1 0 1 
4 / 2 = 2 
2 % 2 = 0 → _ _ 0 0 1 1 0 1 
2 / 2 = 1 
1 % 2 = 1 → _ 1 0 0 1 1 0 1 
1 / 2 = 0 
0 % 2 = 0 → 0 1 0 0 1 1 0 1 
 
4.2) 102 
As above, since this is positive, we can just get the magnitude as an 8-bit number. Here, we’re 
skipping the divide-by-2 part in the description but you still need it for the algorithm. 
102 % 2 = 0 → _ _ _ _ _ _ _ 0 
51 % 2 = 1   → _ _ _ _ _ _ 1 0 
25 % 2 = 1    → _ _ _ _ _ 1 1 0 
12 % 2 = 0  → _ _ _ _ 0 1 1 0 
6 % 2 = 0    → _ _ _ 0 0 1 1 0 
3 % 2 = 1    → _ _ 1 0 0 1 1 0 
1 % 2 = 1    → _ 1 1 0 0 1 1 0 
0 % 2 = 0    → 0 1 1 0 0 1 1 0  
 
4.3) -94 
Since -94 is negative, we first need to get its magnitude, still using 8 bits: 
94 % 2 = 0  → _ _ _ _ _ _ _ 0 
47 % 2 = 1  → _ _ _ _ _ _ 1 0 
23 % 2 = 1  → _ _ _ _ _ 1 1 0 
11 % 2 = 1  → _ _ _ _ 1 1 1 0 
5 % 2 = 1    → _ _ _ 1 1 1 1 0 
2 % 2 = 0    → _ _ 0 1 1 1 1 0 
1 % 2 = 1    → _ 1 0 1 1 1 1 0 
0 % 2 = 0 → 0 1 0 1 1 1 1 0 
Then flip the bits: 01011110 → 10100001 
Then add 1: 10100001 + 1 = 10100010 



CMSC B240 Computer Organization - Spring 2024                     Lab 1: Binary Numbers 
 

4 
 

4.4) -18 
Since -18 is negative, we first need to get its magnitude, still using 8 bits: 
18 % 2 = 0  → _ _ _ _ _ _ _ 0 
9 % 2 = 1  → _ _ _ _ _ _ 1 0 
4 % 2 = 0  → _ _ _ _ _ 0 1 0 
2 % 2 = 0  → _ _ _ _ 0 0 1 0 
1 % 2 = 1    → _ _ _ 1 0 0 1 0 
0 % 2 = 0 → _ _ 0 1 0 0 1 0 
At this point, we can put 0s in front of the number to get it to 8 bits, so 00010010. 
Then flip the bits: 00010010 → 11101101 
Then add 1: 11101101 + 1 = 11101110 
 
4.5) -129 
Here we can use the same approach as above: 
129 % 2 = 1  → _ _ _ _ _ _ _ 1 
64 % 2 = 0 → _ _ _ _ _ _ 0 1 
32 % 2 = 0 → _ _ _ _ _ 0 0 1 
16 % 2 = 0 → _ _ _ _ 0 0 0 1 
8 % 2 = 0 → _ _ _ 0 0 0 0 1 
4 % 2 = 0 → _ _ 0 0 0 0 0 1 
2 % 2 = 0 → _ 0 0 0 0 0 0 1 
1 % 2 = 1 → 1 0 0 0 0 0 0 1 
0 % 2 = 0, so we’re done. 
Then flip the bits: 10000001 → 01111110 
Then add 1: 01111110 + 1 = 01111111 
But wait….! The value we’re trying to represent is -129, but this binary number starts with a 0, 
indicating that it’s positive!  
 
It turns out that we can’t represent -129 as an 8-bit two’s-complement number. The smallest 
(most negative) number we can represent is -(27) = -128. 
 
4.6) 0 
This is a little tricky because 0 is neither positive nor negative, so it’s hard to know whether we 
need to do the “flip the bits and add 1” thing. 
 
Obviously, we can represent the magnitude as 00000000. Note, though, that if we do the “flip 
the bits and add 1” thing, we’d get: 
00000000 → 11111111 
11111111 + 1 = 100000000 
Because we only want an 8-bit number, we’d just use the last 8 bits and get…. 00000000! 
Which is the same as before! 
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Question #5 
Your friend tried to convert the decimal number 41 to unsigned binary and got 101101, and 
wants you to help determine whether it’s correct. 
 
5.1) Aside from redoing the conversion yourself, how else can you tell whether this is correct? 
We can quickly check the work by trying to convert 101101 to decimal and seeing if we get 41. 
However, 101101 = 2^5 + 2^3 + 2^2 + 2^0 = 32 + 8 + 4 + 1 = 45, so this is incorrect. 
 
5.2) If it’s not correct, where do you think they might have gone wrong? 
You may notice that the value (45) is 4 greater than it should be, so it’s clear that there’s an 
extra 4, and thus the fourth bit (counting from the left) should be 0, not 1. 
 
If we look at the algorithm they may have used, it should go like this: 
41 % 2 = 1 → _ _ _ _ _ 1 
20 % 2 = 0 → _ _ _ _ 0 1 
10 % 2 = 0 → _ _ _ 0 0 1 
However, at this point, the bit in this place in your friend’s solution is 1, not 0, so they may have 
made a mistake here.  
 
Question #6 
If the last digit of a 2's complement binary number is 0, then the number is even. If the last two 
digits of a 2's complement binary number are 00 (e.g., the binary number 01100), what does 
that tell you about the number? 
 
This means that it’s a multiple of four. 
 
 
Question #7 
The decimal number 9 is represented in unsigned binary as 1001. Given this, how could you 
quickly determine the representation of 72? 
 
The trick here is realizing that 72 = 9 * 8. 
 
Since 9 is 1001, then to get 72 = 9 * 8, which is 9 * 23, we just add three 0s to the end, so we 
get 1001000. 
 
This is analogous to multiplying a decimal number by 103 = 1,000. If we had 35 * 1,000, we just 
add three 0s to the end of 35 to get 35,000.  
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Question #8 
Another binary representation of signed numbers is called signed magnitude, which is a simple 
representation in which the first bit of the number represents the sign (0 = positive and 1 = 
negative), and the remaining bits represent the magnitude. 
 
For instance, for a six-bit signed magnitude number: 

● 001100 would represent +12, just as it would in two’s-complement 
● 101100 would represent -12, since the first 1 indicates that it’s negative, and the 

remaining bits (01100) represent the magnitude, which is 12 
 
8.1) First, convince yourself that signed magnitude is different from two’s-complement. We said 
that 101100 represents -12 as a signed magnitude number; what does it represent as a six-bit 
two’s-complement number? 
Since 101100 starts with a 1, we know it’s negative as a two’s-complement number. To get the 
magnitude, we need to: 

● Subtract 1: 101100 - 1 = 101011 
● Flip the bits: 101011 → 010100 
● This means the magnitude is 24 + 22 = 20 
● So this is -20 as a two’s complement number 

 
8.2) What is an advantage of two’s-complement over signed magnitude in terms of the number 
of distinct values that can be represented? 
In signed magnitude, there are two representations of zero: 000000 and 100000. 
 
However, in two’s-complement, there is only one representation of 0, which is 000000. Note that 
100000 represents -32 as a 6-bit two’s-complement number. 
 
Since we can only represent 26 = 64 values with a 6-bit number, this means that signed 
magnitude can only represent 63 values because there are two representations of zero, 
whereas two’s-complement can represent all 64. 
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Question #9 
As we have also learned, it is possible to add binary numbers in the same way that we can add 
decimal numbers. 
 
Calculate the sum of the following binary numbers: 
 

1) Unsigned numbers 000101 + 001110 = __________ 
We can add these numbers in the same way that we’d add decimal numbers by lining them up 
and carrying values to the left as needed: 
 
carry →   1 1 
        0 0 0 1 0 1 
      + 0 0 1 1 1 0 
        0 1 0 0 1 1 
 
To check our work, we can convert these to decimal and see if we got the right answer: 

1000101 → 5 
2) 001110 → 14 
3) 010011 → 19, which not coincidentally is 5 + 14. Yeah! 

 
 

2) Signed 2-‘2 Complement numbers: 0000 1000 (8) + 0110 0001 (97) = 0110 1001 (105) 
 
 
3) Signed 2-‘2 Complement numbers: 0000 1011 (11) + 1111 0101 (-11) = 0000 0000 (0) 
 

For each of the above, think about how you can check if your answers above are correct. Do so 
to confirm. 
 
See above. 
 


