Question 1 (10 points) For each of the following, answer True or False as appropriate:

1. The basic electronic device used to build logic gates is called a transistor.

TRUE
2. 8 -bits have 255 unique binary patterns. \qquad
3. Faster computers can compute more things than slower ones.

FALSE
4. A voltage of 0 volts represents a binary digit 1 in the CPU.
5. A voltage of 1.2 volts represents a binary digit 0 in the CPU.

FALSE
6. The idea of a universal computing device was developed by John von Neumann \qquad
FALSE
7. The Difference Engine was developed at the University of Pennsylvania in the 1940s. \qquad
8. The hexadecimal number system is a positional number system. \qquad
TRUE
9. The Roman number system is a positional number system. \qquad
FALSE
10. The XOR gate is logically complete.

FALSE

Question 2 (20 points) Convert the following numbers as specified.

1. $(77)_{10}$ to base-2 (8-bits)
$\ldots 01001101$
2. (-77) $)_{10}$ to base-2 (8-bits 2 's complement representation)

10110011
3. $(77)_{10}$ to base- 16

4D
4. $(77)_{8}$ to base-10

63
5. $(77)_{16}$ to base- 10

119
6. $(-34)_{10}$ to base-2 (8-bits 2 's complement representation)
_11011110
7. (-34) $)_{10}$ to base-2 (16-bits 2's complement representation) 1111111111011110
8. $(01011111)_{2}$ to base-16 \qquad
9. $(01011111)_{2}$ to base-10

95
10. 8-bit, 2's complement (11011111) $)_{2}$ to base-10

- -33

Question 3 (25 points) Below, use the latest value in each variable from the previous question (Note: In C/Java both int and float in Java use 32-bits to represent values):
(a) Consider the C/Java statement:

```
int x = 4230;
```

Show the precise representation (in bits) that will be used to store the value of \mathbf{x}.

$$
\begin{array}{|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{array}
$$

(b) Next, consider the statement:

$$
\text { int } y=-x * 2 ; / / y=-8460
$$

Show the precise representation (in bits) that will be used to store the value of \mathbf{y}.

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	0	0

(c) Next, consider the statement:
int $a=x+y ; \quad / / a=-4230$

Show the precise representation (in bits) that will be used to store the value of a.

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	0

(d) Next, consider the statement:
float $w=x / 2.0 ; ~ / / w=2115.0(2115=1000010$ 0011)

Show the precise representation (in bits) that will be used to store the value of \mathbf{w}.

0	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0

(e) Next, consider the statement:
float $z=-w * 3 ; / / z=-6345.0$ (6345 = 110001100 1001)

Show the precise representation (in bits) that will be used to store the value of \mathbf{z}.
$\left.\begin{array}{|l|}\hline 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Question 4 (10 points)

(a) For what values of ABCDEF will the output of the six-input AND gate be 1 ? \qquad 001110

Also, what decimal value does that represent? Assume that A is the leftmost bit. \qquad 14

(b) How many rows will there be in the Truth Table for the function above? \qquad
(c) How many output lines will a five-input decoder have?
(c) How many output lines will a 16 -input MUX have? \qquad
1 -4
(d) If the code for the letter ' \mathbf{A} ' is 65 and for ' a ' is 97 and, you are given the following in C/Java:

```
char upper = <some uppercase letter>;
char lower;
```

Write the C/Java expression you can use to convert a letter in upper to the corresponding lowercase letter and store it in lower.
lower = upper + 32;

Question 5 (10 points) (A) Complete the Truth Table for the following circuit diagram:

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(B) How many total transistors does the circuit shown above use? \qquad

Question 6 (10 points) A comparator circuit has two 1-bit inputs A and B and three 1-bit outputs G (greater), E (equal), and L (less than). Here is how the outputs are described:
G is 1 if $\mathrm{A}>\mathrm{B}$
E is 1 if $A=B$
L is 1 if $A<B$
0 otherwise
0 otherwise
0 otherwise

Here is a functional block diagram of a comparator:

Complete the truth table for the 1-bit comparator described above.

\mathbf{A}	\mathbf{B}	\mathbf{G}	\mathbf{E}	\mathbf{L}
0	0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
0	1	0	0	$\mathbf{1}$
1	0	1	0	0
1	1	0	$\mathbf{1}$	$\mathbf{0}$

Question $\mathbf{7}$ (15 points) The following logic circuit consists of two XOR gates. Fill in the Output truth table below.

A	B	C	Output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

