Rooted Trees

CS231 Dianna Xu

1

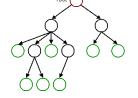
Rooted Tree

- One vertex in a tree is distinguished and known as root. Traditionally drawn on top.
- The level of a vertex is the number of edges between it and the root.
- The height of a tree is the maximum level of any vertex of the tree.

2

Terminology

- Children
- Parent
- Siblings
- Ancestor
- Descendent



3

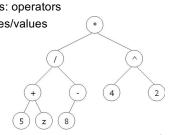
Binary Tree

- A rooted tree with every vertex having at most two children is known as a binary tree.
- · Each child is either the left or right child.
- A binary tree in which each parent has exactly two children is known as a full binary tree.
- A left (resp. right) subtree is the tree rooted in the left (resp right) child.

4

Representations

- · Algebraic expressions
 - internal vertices: operators
 - leaves: variables/values



Characteristics

- If *T* is a full binary tree with *k* internal vertices (*k*>0), then *T* has a total of 2*k*+1 vertices and *k*+1 leaves.
- Proof
 - each internal vertex has exactly 2 children
 - total # of children: 2k
 - root

6

Height

- If T is any binary tree of height h with t leaves (h>0), then t ≤ 2^h
- Or $\log_2 t \le h$
- Proof by strong induction on *h*
 - -P(0): T has only a root \rightarrow 1 leaf: 1 ≤ 2⁰
 - Assume P(i), 0≤i≤k: All binary trees with height less than or equal to k has at most 2^k leaves
 - -P(k+1): T is a binary tree of height k+1

7

Induction Cont.

- -k≥0 \rightarrow k+1≥1, root has at least one child
- Root has exactly one child c:
 - The subtree rooted at c, T_c is of height k
 - By the inductive hypothesis, T_c has at most 2^k leaves
- Root has two children c_1 and c_2 :
 - One of the subtrees (say T_{c1}) is of height k and T_{c2} is of any height between 0 and k
 - By the inductive hypothesis, both have at most 2^k leaves, which gives a total of at most 2^{k+1} .

8