Graph Representation

CS231 Dianna Xu

The Erdös Number

- · Collaboration Graph
- Paul Erdös (1913-1996)
 - A prolific Hungarian mathematician
- E(Einstein) = 2, E(Turing) = 5, E(Nash) = 4
- · Bacon number
- Erdös-Bacon number

Adjacency Matrix

• Given G = (V, E) where |V| = n, the adjacency matrix $A_G(A)$ of G is the $n \times n$ matrix where A_{ij} is the number of edges from v_i to v_j .

$$\left(\begin{array}{cccccc}
0 & 2 & 0 & 2 \\
1 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 1 & 2 & 0
\end{array}\right)$$

Variations

- If G is undirected, then A_{ij} is the number of edges between v_i and v_j.
- The resulting A is symmetric.
- If G is a simple graph, then A_{ij} is binary.
- A is dependent on the ordering of V.
- How many different adjacency matrices represent the same graph?

Connected Components

• Let G be a graph with connected components G_1, \ldots, G_k . Let n_i be the number of vertices in G_i . The adjacency matrix of G has the form:

$$\left[\begin{array}{cccc} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_k \end{array}\right]$$

Matrix Multiplication

 Given matrices A and B, the product M = AB is defined as follows:

$$M_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

• Matrix multiplication does NOT commute.

Matrix Power

 Given a square matrix A, the powers of A are defined as follows:

Theorem

- Given G = (V, E) with adjacency matrix A, the number of walks of length k from v_i to v_i is given by $(A^k)_{ii}$.
- · Proof by induction:
 - -P(1): A_{ij} = # of edges from v_i to v_j = # of walks of length 1 from v_i to v_i
 - Assume P(k): $(A^k)_{ij}$ = # of walks of length k from v_i to v_i
 - Prove P(k+1)

Proof

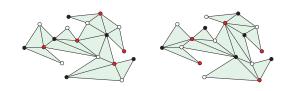
- P(k+1):
 - $-A^{k+1} = AA^k$
 - $-(A^{k+1})_{ij} = a_{i1}(A^k)_{1j} + a_{i2}(A^k)_{2j} + \dots + a_{in}(A^k)_{nj}$
 - Consider $a_{i1}(A^k)_{1j}$:
 - By the inductive hypothesis, it is the # of walks of length k from v₁ to v_j multiplied by the # of walks of length 1 from v_i to
 - Which is the # of walks of length k+1 from v_i to v_j passing through v_i .
 - Argument holds for all terms
 - Thus the total is the number of all possible walks from v_{i} to $v_{i}.$

Triangulation

 A triangulation of a polygon is a decomposition into triangles with maximal non-crossing diagonals.

Graph Coloring

 A coloring of a graph is an assignment of colors to nodes so that no adjacent nodes have the same color



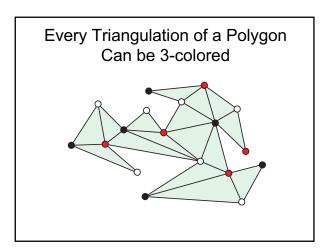
Bipartite Graphs

- A simple graph is *bipartite* if V can be partitioned into $V = V_1 \cup V_2$ so that any two adjacent vertices are in different partitions.
- A bipartite graph is bichromatic (can be two-colored)
 - vertices can be colored using two colors so that no two vertices of the same color are adjacent.

Triangulation of a Polygon

 A triangulation of a polygon is a decomposition into triangles with maximal non-crossing diagonals.

- A polygon is a simple circuit.
- A triangulation is a maximal planar supergraph of a polygon.



Meister's Two Ears

• Three consecutive vertices a, b and c on the boundary of a polygon form an ear if ac is a diagonal. b is known as an ear tip.

• Every polygon with *n*>3 vertices has at least two ears.