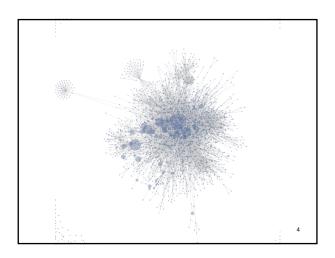
Graphs

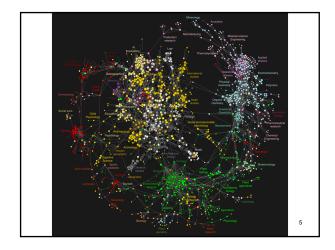
CS231 Dianna Xu

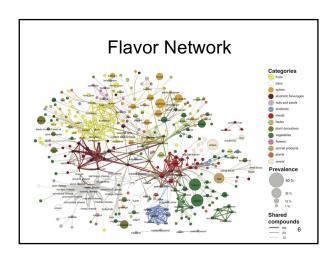
1

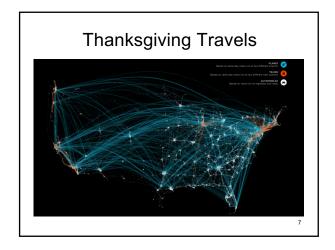
Definition

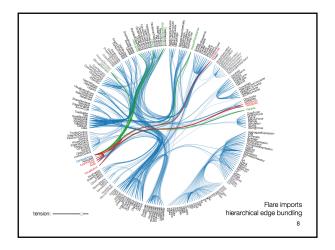
- A Graph G consists of a nonempty set V of vertices and a set E of edges.
 - loop
 - parallel edges
 - an edge is incident on its endpoints
 - endpoints are adjacent to the edge
 - isolated vertex

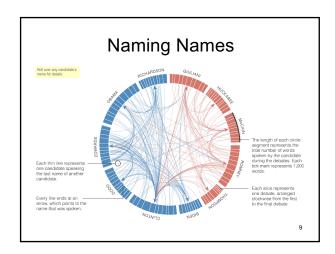


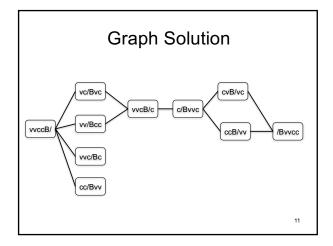

2


Using Graphs to Represent a Network


- Edges are drawn between nodes that relate to each other in some way
- · Hub-and-spoke
 - telephone, power, gas
 - air transit, train and highways
 - -WWW
 - social networks
 - preference maps/recommender systems


3





Vegetarians and Cannibals

- An island with two types of people, vegetarians (Vs) or cannibals (Cs)
- Initially 2 Vs and 2 Cs are on the bank of a river
- · A boat that hold a max of 2
- # of Vs can not be less than # of Cs at any time

10

Special Graphs

- A simple graph does not contain any loops or parallel edges.
- A complete graph K_n, is a simple graph with n vertices and one edge connecting each pair of distinct vertices.
- A graph H is said to be a subgraph of G, iff every vertex in H is also a vertex in G and every edge in H is also an edge in G with the same endpoints. G is then a supergraph of H.

Complete Bipartite - $K_{m,n}$

- A complete bipartite graph K_{m,n}, is a simple graph with vertices v₁ ...v_m and w₁ ... w_n such that:
 - There is an edge from each v_i to each w_i.
 - There is no edge from any v_i to any other v_k
 - There is no edge from any w_i to any other w_i

 $K_{2,3}$

13

Degrees

- Let G be a graph and v a vertex of G.
- The degree of v, deg(v), equals the number of edges incident on v.
- A loop contributes twice to its incident vertex's degree
- The total degree of G is the sum of the degrees of all vertices in G

14

Handshake Lemma

- The total degree of a graph G is twice the number of edges in G.
- Given a graph G and its vertex set V and edge set E, |V| = n,
 - $-\deg(v_1) + \deg(v_2) + ... + \deg(v_n) = 2 \times |E|$
- The total degree of a graph is even.

15

Vertices of Odd Degree

- In any graph there is an even number of vertices of odd degree.
 - total degree of all vertices is even
 - sum of even-degree vertices is even
 - sum of odd-degree vertices is even

16