Gambling and Probability

CS231 Dianna Xu

The game of poker

- · You are given 5 cards (this is 5-card stud poker)
- · The goal is to obtain the best hand you can
- The possible poker hands are (in increasing order):
 - No pair
 - One pair (two cards of the same face)
 - Two pair (two sets of two cards of the same face)
 - Three of a kind (three cards of the same face)
 - Straight (all five cards sequentially ace is either high or low)
 - Flush (all five cards of the same suit)
 - Full house (a three of a kind of one face and a pair of another face)
 - Four of a kind (four cards of the same face)
 - Straight flush (both a straight and a flush)
 - Royal flush (a straight flush that is 10, J, K, Q, A)

Poker probability: royal flush

- What is the chance of getting a royal flush?
 - 10, J, Q, K, and A of the same suit
- There are only 4 possible royal flushes

- Probability = 4/2,598,960 = 0.0000015
 - Or about 1 in 650,000

Poker probability: four of a kind

- · What is the chance of getting 4 of a kind when dealt 5 cards?
 - 5 cards: C(52,5) = 2,598,960
- Possible hands that have four of a kind:
 - There are 13 possible four of a kind hands
 - The fifth card can be any of the remaining 48 cards
 - Thus, total is 13*48 = 624
- Probability = 624/2,598,960 = 0.00024
 - Or 1 in 4165

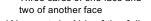
Poker probability: flush

- · What is the chance of a flush? - 5 cards of the same suit
- · We must do ALL of the following:
 - Pick the suit for the flush: C(4,1)
 - Pick the 5 cards in that suit: C(13,5)
- Product rule: C(13, 5)*C(4, 1) = 5148
- Probability = 5148/2,598,960 = 0.00198
 - Or about 1 in 505
- · Note that if you don't count straight flushes (and thus royal flushes) as a "flush", then the number is really 5108



Poker probability: full house

- · What is the chance of getting a full house?
 - Three cards of one face and



- · We must do ALL of the following:
 - Pick the face for the three of a kind: C(13,1)
 - Pick the 3 of the 4 cards to be used: C(4,3)
 - Pick the face for the pair: C(12,1)
 - Pick the 2 of the 4 cards of the pair: C(4,2)
- C(13, 1)*C(4, 3)*C(12, 1)*C(4, 2) = 3744
- Probability = 3744/2,598,960 = 0.00144
 - Or about 1 in 694

1

Inclusion-exclusion principle

- · The possible poker hands are (in increasing order):
 - Nothing
 - One pair cannot include two pair, three of a kind, four of a kind, or full house
 - Two pair cannot include three of a kind, four of a kind, or full house
 - Three of a kind cannot include four of a kind or full house - Straight cannot include straight flush or royal flush cannot include straight flush or royal flush - Flush
 - Full house
 - Four of a kind
 - Straight flush Royal flush
- cannot include roval flush

Poker probability: three of a kind

- · What is the chance of getting a three of a kind?
 - That's three cards of one face
 - Can't include a full house or four of a kind
- We must do ALL of the following:
 - Pick the face for the three of a kind: C(13,1)
 - Pick the 3 of the 4 cards to be used: C(4,3)
 - Pick the two other cards' face values: C(12,2)
 - Pick the suits for the two other cards: C(4,1)*C(4,1)
- C(13,1)*C(4,3)*C(12,2)*C(4,1)*C(4,1) = 54912
- Probability = 54,912/2,598,960 = 0.0211
 - Or about 1 in 47

Poker hand odds

· The possible poker hands are (in increasing

order).		
Nothing	1,302,540	0.5012
One pair	1,098,240	0.4226
Two pair	123,552	0.0475
 Three of a kind 	54,912	0.0211
Straight	10,200	0.00392
Flush	5,108	0.00197
 Full house 	3,744	0.00144
 Four of a kind 	624	0.000240
 Straight flush 	36	0.0000139
 Royal flush 	4	0.00000154

Probability axioms

• Let *E* be an event in a sample space *S*. The probability of the complement of *E* is:

$$p(\overline{E}) = 1 - p(E)$$

- Recall the probability for getting a royal flush is 0.0000015
- The probability of not getting a royal flush is 1-0.0000015 or 0.9999985
- Recall the probability for getting a four of a kind is 0.00024

Probability of the union of two

events If you choose a number between 1 and 100, what is the probability that it is

- The probability of not getting a four of a kind is 1-0.00024 or 0.99976

Probability of the union of two events

- Let E₁ and E₂ be events in sample space S
- Then $p(E_1 \cup E_2) = p(E_1) + p(E_2) p(E_1 \cap E_2)$

divisible by 2 or 5 or both? Let n be the number chosen

-p(2|n) = 50/100 (all the even numbers)

-p(5|n) = 20/100

-p(2|n) and p(5|n) = p(10|n) = 10/100

-p(2|n) or p(5|n) = p(2|n) + p(5|n) - p(10|n)= 50/100 + 20/100 - 10/100

= 3/5

When is gambling worth it?

- This is a statistical analysis, not a moral/ethical discussion
- What if you gamble \$1, and have a ½ probability to win \$10?
- What if you gamble \$1 and have a 1/100 probability to win \$10?
- · One way to determine if gambling is worth it:
 - probability of winning * payout ≥ amount spent per play

13

Expected Value

• The expected values of a process with outcomes of values $a_1, a_2, ..., a_n$ which occur with probabilities $p_1, p_2, ..., p_n$ is:

$$\sum_{i=1}^{n} a_i p_i$$

14

Expected values of gambling

- Gamble \$1, and have a ½ probability to win \$10
 - -(10-1)*0.5+(-1)*0.5=4
- Gamble \$1 and have a 1/100 probability to win \$10?
 - -(10-1)*0.01+(-1)*0.99 = -0.9
- Another way to determine if gambling is worth it: Expected value > 0

15

When is lotto worth it?

- In many older lotto games (Pick-6) you have to choose 6 numbers from 1 to 48
 - -Total possible choices are C(48,6) = 12,271,512
 - Total possible winning numbers is C(6,6) = 1
 - Probability of winning is 0.0000000814
 - Or 1 in 12.3 million
- If you invest \$1 per ticket, it is only statistically worth it if the payout is > \$12.3 million

16

Powerball lottery

- Modern powerball lottery: you pick 5 numbers from 1-55
 - Total possibilities: C(55,5) = 3,478,761
- You then pick one number from 1-42 (the powerball)
- Total possibilities: C(42,1) = 42
- You need to do both -- apply the product rule,
- Total possibilities are 3,478,761* 42 = 146,107,962
 While there are many "sub" prizes, the probability for the jackpot is about 1 in 146 million
- If you count in the other prizes, then you will "break even" if the jackpot is \$121M

Blackjack

- You are initially dealt two cards
 - 10, J, Q and K all count as 10Ace is EITHER 1 or 11 (player's choice)
- You can opt to receive more cards (a "hit")
- You want to get as close to 21 as you can
- If you go over, you lose (a "bust")
- You play against the house

 If the house has a higher score than you, then you lose

Blackjack table

Blackjack probabilities

- Getting 21 on the first two cards is called a blackjack
 - Or a "natural 21"
- · Assume there is only 1 deck of cards
- · Possible blackjack blackjack hands:
 - First card is an A, second card is a 10, J, Q, or K 4/52 for Ace, 16/51 for the ten card
 - = (4*16)/(52*51) = 0.0241 (or about 1 in 41)
 - First card is a 10, J, Q, or K; second card is an A
 - · 16/52 for the ten card, 4/51 for Ace
 - = (16*4)/(52*51) = 0.0241 (or about 1 in 41)
- Total chance of getting a blackjack is the sum of the two:
 - -p = 0.0483, or about 1 in 21
 - More specifically, it's 1 in 20.72

Blackjack probabilities

- Another way to get 20.72
- There are C(52,2) = 1,326 possible initial blackjack hands
- Possible blackjack blackjack hands:
 - Pick your Ace: C(4,1)
 - Pick your 10 card: C(16,1)
 - Total possibilities is the product of the two (64)
- Probability is 64/1,326 = 1 in 20.72 (0.048)

Blackjack probabilities

- Assume there is an infinite deck of cards
- Possible blackjack blackjack hands:
- First card is an A, second card is a 10, J, Q, or K
- 4/52 for Ace, 16/52 for second part
 = (4*16)/(52*52) = 0.0236 (or about 1 in 42)
 First card is a 10, J, Q, or K; second card is an A
 16/52 for first part, 4/52 for Ace
- = (16*4)/(52*52) = 0.0236 (or about 1 in 42)
- Total chance of getting a blackjack is the sum:
 - p = 0.0473, or about 1 in 21
 - More specifically, it's 1 in 21.13 (vs. 20.72)
- In reality, most casinos use "shoes" of 6-8 decks for this reason
 - It slightly lowers the player's chances of getting a blackjack
 - And prevents people from counting the cards...

Counting cards and Continuous Shuffling Machines (CSMs)

- Counting cards means keeping track of which cards have been dealt, and how that modifies the chances
- After cards are discarded, they are added to the continuous shuffling machine
- · Many blackjack players refuse to play at a casino with one
 - So they aren't used as much as casinos would like

So always use a single deck, right?

- Most people think that a single-deck blackjack table is better, as the player's odds increase
 - And you can try to count the cards
- Normal rules have a 3:2 payout for a blackjack
 - If you bet \$100, you get your \$100 back plus 3/2 * \$100, or \$150
- Most single-deck tables have a 6:5 payout
- You get your \$100 back plus 6/5 * \$100 or \$120 additional
- The expected value of the game is lowered
- This OUTWEIGHS the benefit of the single deck! · And the benefit of counting the cards
- Remember, the house always wins

23

Buying (blackjack) insurance

- · If the dealer's visible card is an Ace, the player can buy insurance against the dealer having a blackjack
 - There are then two bets going: the original bet and the insurance
 - If the dealer has blackjack, you lose your original bet, but your insurance bet pays 2-to-1
 - · So you get twice what you paid in insurance back
 - · Note that if the player also has a blackjack, it's a "push"
 - If the dealer does not have blackjack, you lose your insurance bet, but your original bet proceeds normal
- Is this insurance worth it?

Buying (blackjack) insurance

- If the dealer shows an Ace, there is a 16/52 = 0.308 probability that they have a blackjack
 - Assuming an infinite deck of cards
 - Any one of the "10" cards will cause a blackjack
- If you bought insurance 1,000 times, it would be used 308 (on average) of those times
- Let's say you paid \$1 each time for the insurance
- The payout on each is 2-to-1, thus you get \$2 back when you use your insurance
- Thus, you get 2*308 = \$616 back for your \$1,000 spent
 Or, using the formula p(winning) * payout ≥ investment
- 0.308 * \$2 ≥ \$1?
- 0.616 ≥ \$1?

Why counting cards doesn't work well...

- · If you make two or three mistakes an hour, you lose any advantage
 - And, in fact, cause a disadvantage!
- · You lose lots of money learning to count
- Then, once you can do so, you are banned from the casinos

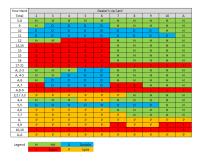
27

So why is Blackjack so popular?

- Although the casino has the upper hand, the odds are much closer to 50-50 than with other games
 - Players following strategy will lose less than 1% on average luck
- Notable exceptions are games that you are not playing against the house - i.e., poker

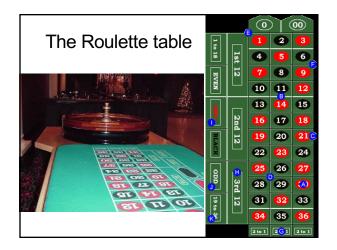
28

Blackjack Strategy Chart



Roulette

- · A wheel with 38 spots is spun
 - Spots are numbered 1-36, 0, and 00
 - European casinos don't have the 00
- · A ball drops into one of the 38 spots
- · A bet is placed as to which spot or spots the ball will fall into
 - Money is then paid out if the ball lands in the spot(s) you bet upon



The Roulette table Probability: · Bets can be **6** placed on: **7** 8 - A single number 1/38 10 11 12 - Two numbers 2/38 15 13 2nd 12 16 17 18 - Four numbers 4/38 19 20 21 - All even numbers 18/38 22 23 24 - All odd numbers 18/38 26 28 29 🙆 - The first 18 nums 18/38 31 32 33 - Red numbers 18/38 34 35 36

The Roulette table

 Bets can be placed on: 	Probability:	Payout:
•	1/20	264
 A single number 	1/38	36 <i>x</i>
Two numbers	2/38	18 <i>x</i>
Four numbers	4/38	9 <i>x</i>
 All even numbers 	18/38	2 <i>x</i>
 All odd numbers 	18/38	2 <i>x</i>
The first 18 nums	18/38	2 <i>x</i>
 Red numbers 	18/38	2 <i>x</i>
		33

Roulette

- It has been proven that proven that no advantageous strategies exist
- · Including:
 - Learning the wheel's biases
 - · Casinos regularly balance their Roulette wheels
 - Using lasers (yes, lasers) to check the wheel's spin
 - What casino will let you set up a laser inside to beat the house?

34

Roulette

- · Martingale betting strategy
 - Where you double your (outside) bet each time (thus making up for all previous losses)
 - It still won't work!
 - You can't double your money forever
 - It could easily take 50 times to achieve a final win
 - If you start with \$1, then you must put in $1*2^{50}$ = \$1,125,899,906,842,624 to win this way!
 - That's 1 quadrillion

35