#### The Binomial Theorem

CS231 Dianna Xu

# Combinatorial Proof

- A combinatorial proof is a proof that uses counting arguments to prove a theorem
  - Rather than some other method such as algebraic techniques
- Essentially, show that both sides of the proof manage to count the same objects
- In other words, a bijection between the two

2

#### Pascal's Formula

- One of the most famous and useful in Combinatorics
- C(n+1, r) = C(n, r-1) + C(n, r)
- Recall another important combinatorial result:
- C(n, r) = C(n, n-r)

3

#### **Combinatorial Proof**

- C(n+1, r):
  - # of ways to choose r elements from n+1
- Remove an arbitrary element from *n*+1, call it *a*.
- Now form all possible subsets of size r.
  - Theses are all the subsets of size r you can have without a.
  - -C(n, r)
- Now we need to account for subsets of size r with a

4

#### Combinatorial Proof

- Now we need to account for subsets of size r with a
  - From the same n elements, form all possible subsets of size r-1, then add a.
  - C(n, r-1)

5

### Algebraic Proof

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

$$\frac{(n+1)!}{k!(n+1-k)!} = \frac{n!}{(k-1)!(n-(k-1))!} + \frac{n!}{k!(n-k)!}$$

$$\frac{(n+1)!}{k[k-1]!(n+1-k)!(n-k)!} = \frac{n!}{(k-1)!(n-k+1)!(n-k)!} + \frac{n!}{k[(k-1)!(n-k)!]}$$

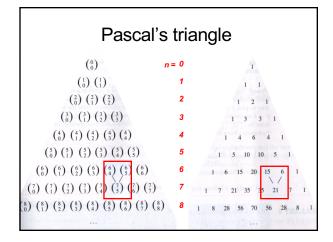
$$\frac{(n+1)}{k(n+1-k)} = \frac{1}{(n-k+1)} + \frac{1}{k}$$

$$\frac{(n+1)}{k(n+1-k)} = \frac{k}{k(n-k+1)} + \frac{(n-k+1)}{k(n-k+1)}$$

$$\frac{(n+1)!}{k(n+1-k)} = \frac{k}{k(n-k+1)} + \frac{(n-k+1)}{k(n-k+1)}$$

$$\frac{(n+1)!}{n+1=k+n-k+1} = \frac{k}{k(k-1)!}$$

$$\frac{(n+1)!}{k!=k(k-1)!} = \frac{k!}{k!=k(k-1)!}$$



#### **Binomial Coefficients**

- A quick expansion of (x+y)<sup>n</sup>
- · Why it's really important:
- · It provides a good context to present proofs
  - Especially combinatorial proofs

### Polynomial Expansion

- Consider  $(x+y)^3$ :  $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
- · Rephrase it as:

$$(x+y)(x+y)(x+y) = x^3 + [x^2y + x^2y + x^2y] + [xy^2 + xy^2 + xy^2] + y^3$$

- When choosing x twice and y once, there are C(3,2) = C(3,1) = 3 ways to choose where the x comes from
- When choosing x once and y twice, there are C(3,2) = C(3,1) = 3 ways to choose where the ycomes from

#### Polynomial expansion

- Consider  $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$
- To obtain the x<sup>5</sup> term

  - Each time you multiple by (x+y), you select the x Thus, of the 5 choices, you choose x 5 times or y 0 times C(5,5) = 1 = C(5, 0)
- To obtain the  $x^4y$  term
  - Four of the times you multiply by (x+y), you select the x
  - The other time you select the y
     Thus, of the 5 choices, you choose x 4 times or y 1 time
  - C(5,4) = 5 = C(5, 1)
  - To obtain the  $x^3y^2$  term - C(5,3) = C(5,2) = 10

### Polynomial expansion

• For  $(x+y)^5$ 

$$(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$$
$$(x+y)^5 = {5 \choose 5}x^5 + {5 \choose 4}x^4y + {5 \choose 3}x^3y^2 + {5 \choose 2}x^2y^3 + {5 \choose 1}xy^4 + {5 \choose 0}y^5$$

#### Polynomial Expansion: The Binomial Theorem

• For  $(x+y)^n$ 

$$(x+y)^{n} = \binom{n}{n} x^{n} y^{0} + \binom{n}{n-1} x^{n-1} y^{1} + \dots + \binom{n}{1} x^{1} y^{n-1} + \binom{n}{0} x^{0} y^{n}$$
$$= \binom{n}{0} x^{n} y^{0} + \binom{n}{1} x^{n-1} y^{1} + \dots + \binom{n}{n-1} x^{1} y^{n-1} + \binom{n}{n} x^{0} y^{n}$$
$$= \sum_{i=0}^{n} \binom{n}{i} x^{n-i} y^{i}$$

Sample question

- Find the coefficient of  $x^5y^8$  in  $(x+y)^{13}$
- Answer:  $\binom{13}{5} = \binom{13}{8} = 1287$

### **Examples**

• What is the coefficient of  $x^{12}y^{13}$  in  $(x+y)^{25}$ ?

$$\begin{pmatrix} 25 \\ 12 \end{pmatrix} = \begin{pmatrix} 25 \\ 13 \end{pmatrix} = \frac{25!}{13!12!} = 5,200,300$$

• What is the coefficient of  $x^{12}y^{13}$  in  $(2x-3y)^{25}$ ?

$$(2x + (-3y))^{25} = \sum_{j=0}^{25} {25 \choose j} (2x)^{25-j} (-3y)^j$$
 – The coefficient occurs when  $j$ =13:

$$\binom{25}{13}2^{12}(-3)^{13} = \frac{25!}{13!!2!}2^{12}(-3)^{13} = -33,959,763,545,702,400$$

## Pascal's Triangle



# Corollary 1 and Algebraic Proof

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, n \ge 0$$

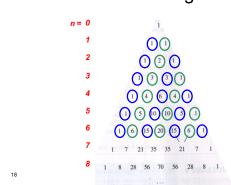
· Algebraic proof

$$2^{n} = (1+1)^{n} \qquad (x+y)^{n} = \sum_{j=0}^{n} {n \choose j} x^{n-j} y^{j}$$
$$= \sum_{k=0}^{n} {n \choose k} 1^{k} 1^{n-k}$$
$$= \sum_{k=0}^{n} {n \choose k}$$

Combinatorial Proof  $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, n \ge 0$ 

- A set with *n* elements has 2<sup>n</sup> subsets
  - By definition of and cardinality of power set
- Each subset has either 0 or 1 or 2 or ... or n elements
  - There are (<sup>n</sup>/<sub>0</sub>) subsets with 0 elements,
  - (\*) subsets with 1 element, ...
  - and  $\binom{n}{n}$  subsets with n elements
  - Thus, the total number of subsets is  $\sum_{k=0}^{n} \binom{n}{k}$

# Pascal's Triangle



# Corollary 2

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0, n \ge 1$$
• Algebraic proof  $0 = 0^n$ 

$$= ((-1)+1)^{n} (x+y)^{n} = \sum_{j=0}^{n} {n \choose j} x^{n-j} y$$

$$= \sum_{k=0}^{n} {n \choose k} (-1)^{k} 1^{n-k}$$

$$= \sum_{k=0}^{n} {n \choose k} (-1)^{k}$$

· This implies that

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

### Corollary 3

• Let *n* be a non-negative integer. Then

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$

· Algebraic proof

$$3^{n} = (1+2)^{n}$$

$$= \sum_{k=0}^{n} {n \choose k} 1^{n-k} 2^{k}$$

$$= \sum_{k=0}^{n} {n \choose k} 2^{k}$$

# Vandermonde's identity

• Let m, n, and r be non-negative integers with r not exceeding either m or n. Then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

- · Assume a congressional committee must consist of r people, and there are nDemocrats and m Republicans
  - How many ways are there to pick the committee?

#### Combinatorial proof of Vandermonde's identity

- Consider two sets, one with m items and one with n items
  - Then there are  $\binom{m+n}{r}$  ways to choose r items from the union of those
- Next, we find that value via a different means
  - Pick k elements from the set with n elements
  - Pick the remaining *r-k* elements from the set with *m* elements
  - Via the product rule, there are  $\binom{m}{r-k}\binom{n}{k}$  ways to do that for **EACH** value
  - Lastly, consider this for all values of k:

$$\sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

22

### More Combinatorial Proofs

• 
$$n^3$$
 -  $n = 6C(n,2) + 6C(n,3)$ 

• 
$$n^3 - n = (n+1)n(n-1)$$

• = 
$$n(n-1)(n-2) + 3n(n-1)$$

• 
$$n^3$$
 -  $n = P(n+1, 3)$