

Set Identities

- · Basic laws on how set operations work
- Just like logical equivalence laws!
 - Replace U with \lor
 - Replace \cap with \land
 - Replace complement with ~
 - Replace \varnothing with \boldsymbol{c}
 - Replace U with \mathbf{t}
- One additional on set differences

3/22/17

Communicative	A U B = B U A	A
Associative	(A U B) U C = A U (B U C)	(A ∩ B) ∩ C = A ∩ (B ∩ C)
Distributive	A U (B ∩ C) = (A U B) ∩ (A U C)	A ∩ (B U C) = (A ∩ B) U (A ∩ C)
Identity	A U Ø = A	$A \cap U = A$
Complement	A U A ^c = U	$A \cap A^c = \emptyset$
Double Complement	(A ^c) ^c = A	
Idempotent	A U A = A	A
Universal Bound	A U <i>U</i> = <i>U</i>	$A \cap \emptyset = \emptyset$
De Morgan's	(A U B)° = A°∩ B°	(A ∩ B)° = A° U B°
Absorption	A U (A ∩ B) = A	A
Complement of U and $Ø$	$U^{c} = \emptyset$	ذ = U
Stet Difference	A−B=A∩B°	

How to Prove a Set Identity

- For example: A∩B = B–(B–A)
- Methods:

 The element method: Prove each set is a subset of each other, by showing any element that belongs to one also belongs to the other
 Algebraic Proof: Use the set identity laws

3/22/17

Proof by Element Method • Assume that $x \in B-(B-A)$ - By definition of set difference, $x \in B \land x \notin B-A$ • Consider $x \notin B-A$ - $x \in B-A = x \in B \land x \notin A$ - $x \notin B-A = x (x \in B \land x \notin A) = x \notin B \lor x \in A$ • So we have $x \in B \land (x \notin B \lor x \in A)$ - $x \in B \land x \notin B = c$ - $x \in B \land x \in A = x \in A \cap B$ - Thus, $x \in B-(B-A) \rightarrow x \in A \cap B$ • $B-(B-A) \subseteq A \cap B$

Russell's Paradox

Consider the set:
 -S = { A | A is a set ∧ A ∉ A }

- Is S an element of itself?
- Consider:

 $-S \in S$

- Then S can not be in itself, by definition
- S ∉ S
- Then S is in itself by definition
- 3/22/17 Contradiction!

The Halting Problem Given a program P, and input I, will the program P ever terminate?

- Meaning will P(I) loop forever or halt?
- Can a computer program determine this? – Can a human?
- First shown by Alan Turing in 1936

3/22/17

Some Notes

- To "solve" the halting problem means we create a function CheckHalt(P,I)
 P is the program we are checking for halting
 - I is the input to that program
- And it will return "loops forever" or "halts"
- Note it must work for any program, not just some programs, and any input

3/22/17

Perfect Numbers Numbers whose divisors (not including the number) add up to the number 6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 + 14 The list of the first 10 perfect numbers: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321 548169216 The last one was 54 digits!

 All known perfect numbers are even; it's an open (i.e. unsolved) problem if odd perfect numbers exist

3/22/17

Where Does That Leave Us?

- If a human can't figure out how to do the halting problem, we can't make a computer do it for us
- It turns out that it is impossible to write such a CheckHalt() function
 - But how to prove this?

3/22/17

CheckHalt()'s Non-existence

- · Consider P(I): a program P with input I
- Suppose that CheckHalt(P,I) exists - prints either "loop forever" or "halt"
- · A program is a series of bits - And thus can be considered data as well
- Thus, we can call CheckHalt(P,P)
 - It's using the bits of program P as the input to program P

3/22/17

CheckHalt()'s non-existence

· Consider a new function:

Test(P): loops forever if CheckHalt(P,P) prints "halts" halts if CheckHalt(P,P) prints "loops forever"

• Now run Test(Test)

- If Test(Test) halts...
 - Then CheckHalt(Test,Test) returns "loops forever"...
 - · Which means that Test(Test) loops forever
- · Contradiction!
- If Test(Test) loops forever...
- Then CheckHalt(Test,Test) returns "halts"... Which means that Test(Test) halts
- Contradiction! 3/22/17

The Halting Problem

- · It was the first algorithm that was shown to not be able to exist
 - You can prove an existential by showing an example (a correct program)
 - But it's much harder to prove that a program can never exist

3/22/17