
3/22/17

1

Set Properties

CS 231
Dianna Xu

3/22/17

Set Identities
• Basic laws on how set operations work
• Just like logical equivalence laws!

– Replace U with Ú
– Replace ∩ with Ù
– Replace complement with ~
– Replace Æ with c
– Replace U with t

• One additional on set differences

3/22/17

Set identities: De Morgan again

BABA

BABA

!"

"!

=

=

• These should look
very familiar…

3/22/17

Communicative A U B = B U A A ∩ B = B ∩ A

Associative (A U B) U C =
A U (B U C)

(A ∩ B) ∩ C =
A ∩ (B ∩ C)

Distributive A U (B ∩ C) =
(A U B) ∩ (A U C)

A ∩ (B U C) =
(A ∩ B) U (A ∩ C)

Identity A U Æ = A A ∩ U = A
Complement A U Ac = U A ∩ Ac = Æ

Double Complement (Ac)c = A
Idempotent A U A = A A ∩ A = A

Universal Bound A U U = U A ∩ Æ = Æ

De Morgan’s (A U B)c = Ac ∩ Bc (A ∩ B)c = Ac U Bc

Absorption A U (A ∩ B) = A A ∩ (A U B) = A
Complement of U

and Æ
Uc = Æ Æc = U

Set Difference A – B = A ∩ Bc3/22/17

Subset Relations

• A ∩ B⊆ A, A ∩ B⊆ B
• A⊆ A U B, B⊆ A U B
• A⊆ B ∧ B⊆ C ® A⊆ C

3/22/17

Proofs

• To prove that A is a subset of B (A⊆ B):
– Assume that x∈A is a particular but arbitrarily

chosen element of A
– Show that x∈ B

• To prove that two sets A and B are equal
(A = B):
– prove A⊆ B, and
– prove B⊆ A

3/22/17

3/22/17

2

How to Prove a Set Identity

• For example: A∩B = B–(B–A)
• Methods:

– The element method: Prove each set is a
subset of each other, by showing any element
that belongs to one also belongs to the other

– Algebraic Proof: Use the set identity laws

3/22/17

What we are going to prove…

A∩B = B–(B–A)

A B

A∩B B-AB-(B-A)

3/22/17

Definition of difference
Definition of difference
De Morgan’s law
Double Complement
Distributive law
Complement law
Identity law
Commutative law n

Proof by Set Identity Laws
• Prove that A∩B=B–(B–A)

B− (B− A) = B− (B A)

)A(BB !!=

)AB(B !"=
A)B(B !"=

A)(B)B(B !"!=
A)(B!"Æ=

A)(B!=
BA!=3/22/17

Proof by Element Method

• Assume that an element is a member of
one of the identities implies that it is a
member of the other

• Repeat for the other direction
• We are trying to show:

– (x Î A∩B → x Î B–(B–A))∧(x Î B–(B–A) → x
Î A∩B)

– This is the bi-conditional: x Î A∩B ↔ x Î B–
(B–A)

• Not good for long proofs
3/22/17

Proof by Element Method

• Assume that x Î B–(B–A)
– By definition of set difference, x Î B Ù x Ï B–A

• Consider x Ï B–A
– x Î B–A = x Î B Ù x Ï A

– x Ï B–A = ~(x Î B Ù x Ï A) = x Ï B Ú x Î A

• So we have x Î B Ù (x Ï B Ú x Î A)
– x Î B Ù x Ï B = c
– x Î B Ù x Î A = x Î A∩B
– Thus, x Î B–(B–A) → x Î A∩B

• B–(B–A) ⊆ A∩B
3/22/17

Proof by Element Method

• Assume that x Î A∩B
– By definition of intersection, x Î A Ù x Î B

• Thus, we know that x Ï B–A
– B–A includes all the elements in B but not in A

• Consider B–(B–A)
– We know x Î B Ù x Ï B–A
– By definition of difference, x Î B–(B–A)

• x Î A∩B → x Î B–(B–A)
• A∩B⊆ B–(B–A) n
3/22/17

3/22/17

3

Russell’s Paradox
• Consider the set:

– S = { A | A is a set Ù A Ï A }
• Is S an element of itself?

• Consider:
– S Î S

• Then S can not be in itself, by definition
– S Ï S

• Then S is in itself by definition
– Contradiction!

3/22/17

How Do We Fix It?
• Consider the set:

– S = { A | A⊆U Ù A Ï A }
• Similarly:

– S Î S ® S⊆UÙ S Ï S
• But:

– S Ï S ® ~(S⊆U Ù S Ï S) = S ⊈UÚ S Î S
• In other words, S is not a proper set

3/22/17

The Halting Problem
• Given a program P, and input I, will the

program P ever terminate?
– Meaning will P(I) loop forever or halt?

• Can a computer program determine this?
– Can a human?

• First shown by Alan Turing in 1936

3/22/17

Some Notes

• To “solve” the halting problem means we
create a function CheckHalt(P,I)
– P is the program we are checking for halting
– I is the input to that program

• And it will return “loops forever” or “halts”
• Note it must work for any program, not just

some programs, and any input

3/22/17

Perfect Numbers
• Numbers whose divisors (not including the number) add

up to the number
– 6 = 1 + 2 + 3
– 28 = 1 + 2 + 4 + 7 + 14

• The list of the first 10 perfect numbers:
6, 28, 496, 8128, 33550336, 8589869056,
137438691328, 2305843008139952128,
2658455991569831744654692615953842176,
191561942608236107294793378084303638130997321
548169216
– The last one was 54 digits!

• All known perfect numbers are even; it’s an open (i.e.
unsolved) problem if odd perfect numbers exist

3/22/17

Where Does That Leave Us?

• If a human can’t figure out how to do the
halting problem, we can’t make a
computer do it for us

• It turns out that it is impossible to write
such a CheckHalt() function
– But how to prove this?

3/22/17

3/22/17

4

CheckHalt()’s Non-existence

• Consider P(I): a program P with input I
• Suppose that CheckHalt(P,I) exists

– prints either “loop forever” or “halt”
• A program is a series of bits

– And thus can be considered data as well
• Thus, we can call CheckHalt(P,P)

– It’s using the bits of program P as the input to
program P

3/22/17

CheckHalt()’s non-existence
• Consider a new function:

Test(P):
loops forever if CheckHalt(P,P) prints “halts”
halts if CheckHalt(P,P) prints “loops forever”

• Now run Test(Test)
– If Test(Test) halts…

• Then CheckHalt(Test,Test) returns “loops forever”…
• Which means that Test(Test) loops forever
• Contradiction!

– If Test(Test) loops forever…
• Then CheckHalt(Test,Test) returns “halts”…
• Which means that Test(Test) halts
• Contradiction!

3/22/17

The Halting Problem

• It was the first algorithm that was shown to
not be able to exist
– You can prove an existential by showing an

example (a correct program)
– But it’s much harder to prove that a program

can never exist

3/22/17

