

Fibonacci Sequence in Java
int F(int n) {
 if ((n == 1) || (n == 2))
 return 1;
 else
 return F(n-1) + F(n-2);
}

Bad Recursive Definitions

Consider: - f(0) = 1 - f(n) = 1 + f(n-2) - What is f(1)?
Consider: - f(0) = 1 - f(n) = 1+f(-n) - What is f(1)?

Recursive String Definition

- Terminology
 - $-\,\lambda$ is the empty string:""
 - $-\Sigma$ is the alphabet, i.e. the set of all letters: { a, b, c, ..., z }
- We define a set of strings Σ^* as follows - Base: $\lambda \in \Sigma^*$
 - If $w \in \Sigma^*$ and $x \in \Sigma$, then $wx \in \Sigma^*$
 - Thus, $\boldsymbol{\Sigma}^{\star}$ is the set of all the possible strings that can be generated with the alphabet

Defining Strings via Recursion

- Let Σ = {0, 1}
- Thus, Σ^* is the set of all binary numbers Or all binary strings
 - $-\operatorname{Or}$ all possible machine executables

Proof

- Prove that S contains all positive integers divisible by 3
- Let P(n) = 3n, n≥1, show 3n ∈ S
 Base case: P(1) = 3*1 ∈ S
 - By the base of the recursive definition
 - Inductive hypothesis: $P(k) = 3^* k \in S$
 - Recursive step: show $P(k+1) = 3^*(k+1) \in S$ • $3^*(k+1) = 3k+3$
 - $3(\kappa + 1) = 3\kappa + 3$ • $3k \in S$ by the inductive hypothesis
 - $3 \in S$ by the base case
 - Thus, $3k+3 \in S$ by the recursive definition

13

15

Structural Induction A more convenient form of induction for recursively defined "things"

- Used in conjunction with recursive definitions
- Three parts:
 - Base step: Show the result holds for the elements in the base of the recursive definition
 - Inductive hypothesis: Assume that the statement is true for some existing elements
 - Recursive step: Show that the recursive definition allows the creation of a new element using the existing elements

Structural Induction on Strings • Part (a): Give the definition for *ones(s)*, which counts the number of ones in a bit string s • Let $\Sigma = \{0, 1\}$ • Base: *ones*(λ) = 0 • Recursion: *ones(wx)* = *ones(w)* + x – Where $x \in \Sigma$ and $w \in \Sigma^*$ – Note that x is a bit: either 0 or 1

Induction Methods Compared

Usually formulae	Usually formulae not easily provable via mathematical induction	Only things defined via recursion
Assume P(k)	Assume P(1), P(2),, P(k)	Assume statement is true for some "old" elements
rue for P(k+1)	True for P(k+1)	Statement is true for some "new" elements created with "old" elements
Base case	Base case	Basis step
Inductive step	Inductive step	Recursive step
	formulae Assume P(k) rue for P(k+1) Base case nductive step	formulae production Assume P(k) Assume P(1), P(2),, P(k) rue for P(k+1) True for P(k+1) Base case Base case Inductive step Inductive step

