
2/28/17

1

1

Correctness of Algorithm

CS 231
Dianna Xu

What does it mean for a 
program to be correct?

• Syntax errors
• Implementation errors
• Logical errors (algorithmic errors)

– This part can be proved mathematically
– “We now take the position that it is not only

the programmer's task to produce a correct
program, but also to demonstrate its
correctness in a convincing manner ” –
Dijkstra, 1967

2

Predicates
• An algorithm is designed to produce a

certain final state (post-condition) from a
certain initial state (pre-condition).

• Proof of correctness: show that if the pre-
condition is true for a collection of values,
then the post-condition is also true.

3

Example

• Algorithm to compute a product of two
nonnegative integers
– Pre-condition: input variables x and y are non-

negative integers
– Post-condition: output variable p = xy

4

Correctness of a loop

• Method to prove the correctness of a loop
• Given a while loop, entry restricted by a

condition G (guard).
Pre-condition for the loop
while (G)

body
end while

Post-condition for the loop

5

Loop Invariant Theorem

• Given a predicate I(n), a loop is correct if:
– Basis: I(0) is true before the first iteration of the loop
– Inductive: For all integers k ≥ 0, G Ù I(k) before any

iteration → I(k+1) after the iteration
– Eventual Guard Falsity: After a finite number of

iterations, G becomes false
– Correctness of post-condition: If I(N) is true when N is

the least number of iterations after which G is false,
the values of the algorithm variables will be as
specified in the post-condition.

6



2/28/17

2

Loop to compute a product

Pre-condition: x and y are nonnegative
integers, i = 0 and product = 0
while (i≠x)
product := product + y
i := i+1

end while

Post-condition: product = xy
Loop invariant: I(n): i = n Ù product = ny

7

Proof
• Base: I(0): i=0 and product = 0*y
• Inductive: G Ù I(k) before iteration →

I(k+1) after iteration
– inductive hypothesis:
– i=k Ù product = ky
– inductive step:
– product = product + y = ky + y = (k+1)y
– i = i+1 = k+1

8

Proof
• Falsity of Guard: after x iterations, i=x
• Correctness of Post-condition:

– N=x
– i=N Ù product = Ny
– i=x Ù product = xy

9

Loop Invariant

• A statement of conditions that must be
true on entry into a loop and are
guaranteed to remain true after every
iteration of the loop

• Inductive invariant
• Finding the right one is often the hardest

part of proving the correctness of a loop
• Loop invariant and negated guard implies

post-condition – must be strong enough
10

Loop

Pre-condition: x = 0, i = 2
while (i<=10)
x := x + i*i
i := i+1

end while

Post-condition: x = sum of squares of 2-10
Loop invariant: I(n): i = n Ù x =

11

i2
i=2

n

∑

• Thinking about loops in terms of invariants
help you avoid errors and bad practices:
– off by one errors
– wrong/missing code in the loop body
– declarations of variables outside the loop that

are only used inside the loop body

12



2/28/17

3

Finding the Max Element
Pre-condition: a1, a2…an ϵ Z, max:= a1

for (i:= 2 to n)
if (max < ai) then max:= ai

next i
Post-condition:
max = the largest value in {a}

13


