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Strong Mathematical Induction 
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Strong induction

• Weak mathematical induction assumes
P(k) is true, and uses that (and only that!)
to show P(k+1) is true

• Strong mathematical induction assumes
P(1), P(2), …, P(k) are all true, and uses
that to show that P(k+1) is true.
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Strong induction example 1

• Show that any number > 1 can be written
as the product of one or more primes

• Base case: P(2)
– 2 is the product of 2 (remember that 1 is not

prime!)
• Inductive hypothesis: assume P(2), P(3),

…, P(k) are all true
• Inductive step: Show that P(k+1) is true
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Strong induction example 1

• Inductive step: Show that P(k+1) is true
• There are two cases:

– k+1 is prime
• It can then be written as the product of k+1

– k+1 is composite
• It can be written as the product of two composites,

a and b, where 2 ≤ a ≤ b < k+1
• By the inductive hypothesis, both P(a) and P(b) are

true n
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Strong induction vs. ordinary 
induction

• Determine which amounts of postage can
be written with 5 and 6 cent stamps

– Prove using both versions of induction

• Answer: any postage ≥ 20
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Answer via mathematical induction

• Show base case: P(20):
– 20 = 5 + 5 + 5 + 5

• Inductive hypothesis: Assume P(k) is true
• Inductive step: Show that P(k+1) is true

– If P(k) uses a 5 cent stamp, replace that stamp with a
6 cent stamp

– If P(k) does not use a 5 cent stamp, it must use only 6
cent stamps

• Since k > 18, there must be four 6 cent stamps
• Replace these with five 5 cent stamps to obtain k+1 n
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Answer via strong induction
• Show base cases: P(20), P(21), P(22), P(23), and P(24)

– 20 = 5 + 5 + 5 + 5
– 21 = 5 + 5 + 5 + 6
– 22 = 5 + 5 + 6 + 6
– 23 = 5 + 6 + 6 + 6
– 24 = 6 + 6 + 6 + 6

• Inductive hypothesis: Assume P(20), P(21), …, P(k) are
all true

• Inductive step: Show that P(k+1) is true
– Obtain P(k+1) by adding a 5 cent stamp to P(k+1-5)
– P(k+1-5) = P(k-4) is true n

The Well-ordering Principle for 
Integers

• Let S be a set containing one or more
integers all of which are greater than some
fixed integer. Then S has a least element.

• Every non-empty set of positive integers
contains a least element

• Equivalent to ordinary and strong
mathematical inductions
– i.e. if one is true, so are the other two
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Archimedean property

• Let a, b be positive integers. $ positive
integer n, such that na ≥ b.

• Assume there exists positive integers x
and y such that "n, nx < y.

• Consider the set S = {y – nx}.
• By the well-ordering principle, S has a

least element, say y-mx.
• Consider y-(m+1)x
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Principle of mathematical 
induction

• Let P be a set of positive integers with the
following properties:
– 1 in P
– k in P → k+1 in P

• Then P is the set of all positive integers
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Proof with the well-ordering 
principle

• Let S be the set of all positive integers not
in P.

• Assume that S is not empty.
• Then S has a least element, say a
• a > 1 (1 in P)
• a-1 is not in S (a is the least element of S)
• a-1 in P → a in P
• Contradiction n
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Chess and induction
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Can the knight reach any
square in a finite number
of moves?

Show that the knight can
reach any square (i, j) for
which i+j=k where k > 1.

Base case: k = 2

Inductive hypothesis:
assume the knight can
reach any square (i, j) for
which i+j=k where k > 1.

Inductive step: show the
knight can reach any
square (i, j) for which
i+j=k+1 where k > 1.
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Chess and induction

• Inductive step: show the knight can reach any
square (i, j) for which i+j=k+1 where k > 1.
– Note that k+1 ≥ 3, and one of i or j is ≥ 2
– If i ≥ 2, the knight could have moved from (i-2, j+1)

• Since i+j = k+1, i-2 + j+1 = k, which is assumed true
– If j ≥ 2, the knight could have moved from (i+1, j-2)

• Since i+j = k+1, i+1 + j-2 = k, which is assumed true n
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Polygon

2 CHAPTER 1. POLYGONS

Figure 1.1. (a) A polygon. (b)–(d) Objects that are not polygons.

circumstances (such as in Chapter 2) it will be useful to recognize “flat
vertices.” The set of vertices and edges of P is called the boundary of
the polygon, denoted as ∂P. Figure 1.1(a) shows a polygon with nine
edges joined at nine vertices. Diagrams (b)–(d) show objects that fail to
be polygons.

The fundamental “Jordan curve theorem,” formulated and proved by
Camille Jordan in 1882, is notorious for being both obvious and difficult
to prove in its full generality. For polygons, however, the proof is easier,
and we sketch the main idea.

Theorem 1.1 (Polygonal Jordan Curve). The boundary ∂P of a polygon
P partitions the plane into two parts. In particular, the two compo-
nents of R2 \∂P are the bounded interior and the unbounded exterior.2

Sketch of Proof. Let P be a polygon in the plane. We first choose a fixed
direction in the plane that is not parallel to any edge of P. This is
always possible because P has a finite number of edges. Then any point
x in the plane not on ∂P falls into one of two sets:

1. The ray through x in the fixed direction crosses ∂P an even number
of times: x is exterior. Here a ray through a vertex is not counted as
crossing ∂P.

2. The ray through x in the fixed direction crosses ∂P an odd number of
times: x is interior.

Notice that all points on a line segment that do not intersect ∂P must
lie in the same set. Thus the even sets and the odd sets are connected.
And moreover, if there is a path between points in different sets, then
this path must intersect ∂P.

This proof sketch is the basis for an algorithm for deciding whether a
given point is inside a polygon, a low-level task that is encountered every
time a user clicks inside some region in a computer game, and in many
other applications.

2 The symbol ‘\’ indicates set subtraction: A\ B is the set of points in A but not in B.
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Diagonal

1.1 DIAGONALS AND TRIANGULATIONS 3

Figure 1.2. (a) A polygon with (b) a diagonal; (c) a line segment; (d) crossing
diagonals.

Exercise 1.2. Flesh out the proof of Theorem 1.1 by supplying arguments
to (a) justify the claim that if there is a path between the even- and
odd-crossings sets, the path must cross ∂P; and (b) establish that for
two points in the same set, there is a path connecting them that does
not cross ∂P.

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching ∂P except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.2 shows (a) a polygon, (b) a diagonal, (c) a line segment
that is not a diagonal, and (d) two crossing diagonals.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here maximal means that no further diagonal may be added to the
set without crossing (sharing an interior point with) one already in
the set. Figure 1.3 shows a polygon with three different triangulations.
Triangulations lead to several natural questions. How many different
triangulations does a given polygon have? How many triangles are
in each triangulation of a given polygon? Is it even true that every
polygon always has a triangulation? Must every polygon have at least
one diagonal? We start with the last question.

Figure 1.3. A polygon and three possible triangulations.
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Triangulation

• A triangulation of a polygon is a
decomposition into triangles with maximal
non-crossing diagonals.
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Existence of a Diagonal

• Every polygon with n>3 vertices has a
diagonal.
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Figure 1.4. Finding a diagonal of a polygon through sweeping.

Lemma 1.3. Every polygon with more than three vertices has a diagonal.

Proof. Let v be the lowest vertex of P; if there are several, let v be the
rightmost. Let a and b be the two neighboring vertices to v. If the
segment ab lies in P and does not otherwise touch ∂P, it is a diagonal.
Otherwise, since P has more than three vertices, the closed triangle
formed by a, b, and v contains at least one vertex of P. Let L be a
line parallel to segment ab passing through v. Sweep this line from
v parallel to itself upward toward ab; see Figure 1.4. Let x be the
first vertex in the closed triangle abv, different from a, b, or v, that L
meets along this sweep. The (shaded) triangular region of the polygon
below line L and above v is empty of vertices of P. Because vx cannot
intersect ∂P except at v and x, we see that vx is a diagonal.

Since we can decompose any polygon (with more than three vertices)
into two smaller polygons using a diagonal, induction leads to the
existence of a triangulation.

Theorem 1.4. Every polygon has a triangulation.

Proof. We prove this by induction on the number of vertices n of the
polygon P. If n = 3, then P is a triangle and we are finished. Let n > 3
and assume the theorem is true for all polygons with fewer than n
vertices. Using Lemma 1.3, find a diagonal cutting P into polygons P1
and P2. Because both P1 and P2 have fewer vertices than n, P1 and P2
can be triangulated by the induction hypothesis. By the Jordan curve
theorem (Theorem 1.1), the interior of P1 is in the exterior of P2, and
so no triangles of P1 will overlap with those of P2. A similar statement
holds for the triangles of P2. Thus P has a triangulation as well.

Exercise 1.5. Prove that every polygonal region with polygonal holes,
such as Figure 1.1(d), admits a triangulation of its interior.
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Theorem

• Every polygon admits a triangulation.
• Every triangulation of a polygon P with n

vertices has n-2 triangles and n-3
diagonals.

• Proof by strong induction
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