

for loop

for (i:= initial expr to final expr)
 body
next i

Greatest common divisor

- a, b ∈ Z, a≠0, b≠0, gcd(a, b) is the integer d with the following properties:
 - d | a and d | b
 - $\forall c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then $c \leq d$

Lemmas

- Lemma 1:
 - If *r* is a positive integer, then gcd(*r*, 0) = *r*
- Lemma 2:
 - Given $a, b \in \mathbb{Z}$, with $b \neq 0$, and $q, r \in \mathbb{Z}$ such that: a = bq + r
 - Then gcd(a, b) = gcd(b, r)
 - Show $gcd(a, b) \leq gcd(b, r)$
 - And $gcd(b, r) \leq gcd(a, b)$

• By hand: gcd(123, 456) $-456 = 123^*3 + 87 \rightarrow gcd(456, 123) = gcd(123, 87)$ $-123 = 87^*1 + 36 \rightarrow gcd(123, 87) = gcd(87, 36)$ $-87 = 36^*2 + 15 \rightarrow gcd(87, 36) = gcd(36, 15)$ $-36 = 15^*2 + 6 \rightarrow gcd(36, 15) = gcd(15, 6)$ $-15 = 6^*2 + 3 \rightarrow gcd(15, 6) = gcd(6, 3)$ $-6 = 2^*3 \rightarrow gcd(6, 3) = 3$

Algorithm: Euclidean

11

```
Input: A, B (A, B in Z, A > B \geq 0)

Algorithm Body:

a := A, b := B, r := B

while (b \neq 0)

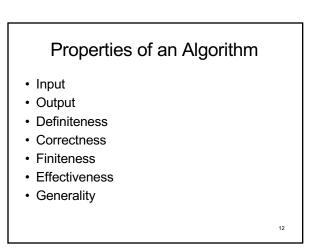
r := a \mod b

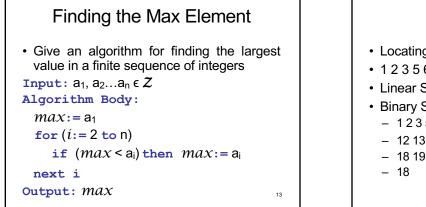
a := b

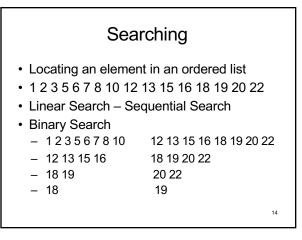
b := r

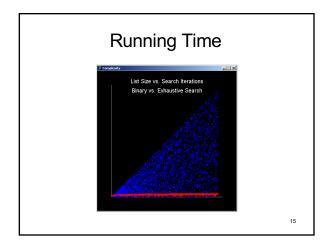
end while

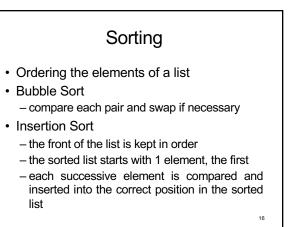
Output: gcd := a
```











- Optimization problems to find a solution to the given problem that either maximizes or minimizes the value of some parameter
- The simplest approach greedy
 - select the best available choice at each step
 - does not consider consequences of all sequences
 - solution is not always optimal

17