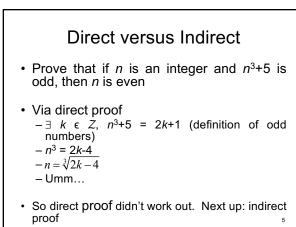
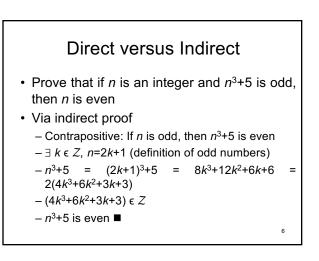


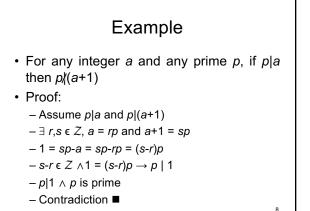
- When do you use a direct proof versus an indirect proof?
- If it's not clear from the problem, try direct first, then indirect second
 - If indirect fails, try the other proofs





Proof by Contradiction

- Given a statement *p*, assume it is false
 Assume ~*p*
- Prove that ~p cannot occur
 - -~p→**c**
 - A contradiction exists
- Given a statement of the form $p \rightarrow q$
 - To assume it's false, you only have to consider the case where p is true and q is false



Contradiction and Contraposition

- $\forall x \in D, P(x) \rightarrow Q(x)$
- Contraposition: prove by giving a direct proof for $\forall x \in D, \neg Q(x) \rightarrow \neg P(x)$
 - Suppose x is an arbitrary element of D, such that ~Q(x)

9

11

- Prove ~P(x)
- · Contradiction:
 - Suppose $\exists x \in D$ such that $P(x) \land \neg Q(x)$
 - Prove for a contradiction

The Infinitude of Primes Theorem (by Euclid): There are infinitely many

- prime numbers. Proof
- Assume there are a finite number of primes $p_1, p_2 \dots, p_n$.
- Consider the number $q = p_1 p_2 \dots p_n + 1$
- This number is not divisible by any of the listed primes
 If we divided p_i into q, it would result in a remainder of 1
- We must conclude that q is a prime number, and q is not among the primes listed above.

10

Contradiction

The Irrationality of $\sqrt{2}$

- Theorem: $\sqrt{2}$ is irrational
- Proof
 - Assume $\sqrt{2}$ is rational
 - $\exists r \in \mathcal{Q}, r^2 = 2$
 - $\exists a, b \in \mathbb{Z}$, $(a/b)^2 = 2$ and a, b have no common factors
 - $-a^{2}/b^{2}=2$
 - $-a^2 = 2b^2$ (implies a^2 is even and hence *a* is even)
 - $-a^2 = (2k)^2 = 4k^2 = 2b^2$
 - $-2k^2 = b^2$ (implies b^2 is even and hence *b* is even)
 - -a and b are both even, and have the common factor 2
 - Contradiction

