2

4

6

Rational Numbers, Divisibility and the Quotient Remainder Theorem CS 231 Dianna Xu

Definition: Rational

- A real number is rational iff it can be expressed as a quotient of two integers with a nonzero denominator:
 - -r is rational ↔ ∃ $a, b \in \mathbb{Z}$ such that r = a/b and $b \neq 0$
- $\cdot \mathcal{Q}$ and \mathcal{R} - \mathcal{Q}
- -7/2351?
- 0.56375631?
- 0.325325325....?

Example

- The product of two rational numbers is rational
- Proof
 - let *r* and *s* be particular but arbitrarily chosen rational numbers
 - -r = a/b and s = c/d, a, b, c, d $\in \mathbb{Z}$ and $b \neq 0$ and $d \neq 0$
 - -rs = ac/bd
 - -ac, $bd \in Z$ and $bd \neq 0$
 - rs is rational ■

Definition: Divisibility

- *n* and *d* are integers and $d \neq 0$
- *n* is divisible by $d \leftrightarrow \exists k \in \mathbb{Z}$ such that n = dk
- d|n
- If *n*/*d* is not an integer, then *d*/*n*
- $d \le n$
- Transitivity: $\forall a, b, c \in \mathcal{Z}, a|b \land b|c \rightarrow a|c$

5

Example
∀a, b, c ∈ Z, a|b ∧ a|c → a|(b+c)
Proof

let a, b, c be particular but arbitrarily chosen integers such that a|b ∧ a|c
a|b: ∃r ∈ Z, b = ra
a|c: ∃s ∈ Z, c = sa
b+c = ra + sa = (r+s)a
r+s ∈ Z
a|(b+c)

Unique Factorization of Integers

- Given any integer n>1, there exist

 a positive integer k,
 - distinct prime numbers $P_{1}, P_{2}, \cdots, P_{k}$
 - positive integers e_1, e_2, \dots, e_k , such that

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} = \prod_{i=1}^k p_i^{e_i}$$

Fundamental Theorem of Arithmetic

• A positive integer greater than 1 is either prime or a product of primes

 $999 = 3^3 \times 37$ $1000 = 2^3 \times 5^3$

 $1001 = 7 \times 11 \times 13$

Composite

- If *n* is a composite integer, then *n* has a prime divisor less than or equal to the square root of *n*
- Show that 899 is composite
- Proof
 - Divide 899 by successively larger primes (up to $\sqrt{899}$ = 29.98), starting with 2
 - We find that 29 (and thus 31) divide 899

The Prime Number Theorem

- The number of primes less than x is approximately x/ln(x)
- Consider showing that 2650-1 is prime
 - There are approximately 10¹⁹³ prime numbers less than 2⁶⁵⁰-1
- How long would it take to test each of those prime numbers?

10

12

Composite Factors

• Assume a computer can test 1 billion (10⁹) per second

 $-10^{193}/10^9 = 10^{184}$ seconds = 3.2 x 10^{176} years!

- There are quicker methods to show a number is prime, but NOT to find the factors
- RSA encryption/decryption relies on the fact that one must factor very large composite n (1200-digit or so) into its component primes

11

9

Quotient/Remainer

- Given integer *n* and positive integer *d*, there exist unique integers *q* and *r* such that n = dq + r, $0 \le r < n$
- q is called the quotient and r the remainder
- $q = n \operatorname{div} d(n \setminus d) \leftarrow$ Integer Division!
- r = n mod d (n%d)
- $n\%d = n d(n\backslash d)$

Example

- Given an integer *n*, if n%13 = 5, what is 6n%13?
 - *n* = 13*q* + 5
 - -6n = 6(13q+5) = 13x6xq + 30
 - -6n = 13x6xq + 13x2 + 4 = 13x(6q+2) + 4
 - 6*n*%13 = 4

13

Example • Prove that if *n* is any integer not divisible by 5, then *n*² has a remainder of 1 or 4 when divided by 5 -n = 5q+1, 5q+2, 5q+3 or 5q+4 $-(5q+1)^2 = 25q^2+10q+1 = 5(5q^2+2q) + 1$ $-(5q+2)^2 = 25q^2+20q+4 = 5(5q^2+6q+1) + 4$ $-(5q+4)^2 = 25q^2+40q+16 = 5(5q^2+8q+3) + 1$

