Direct Proof and Counterexample

CS 231 Dianna Xu

Vacuous proofs

- Consider an implication: $p \rightarrow q$
- If it can be shown that *p* is false, then the implication is always true
 - By definition of an implication/conditional
- Note that you are showing that the antecedent is false

Vacuous proof example

- · Consider the statement:
 - All criminology majors in CS 231 are female
 Rephrased: If you are a criminology major and you are in CS231, then you are female
- Since there are no criminology majors in this class, the antecedent is false, and the implication is true

Trivial proofs

• Consider an implication: $p \rightarrow q$

consequent is true

- If it can be shown that q is true, then the implication is always true
 By definition of an implication
- Note that you are showing that the

Trivial proof example

- Consider the statement:
 If you are in CS231 then you are human (domain is all people)
- Since all people are human, the implication is true regardless

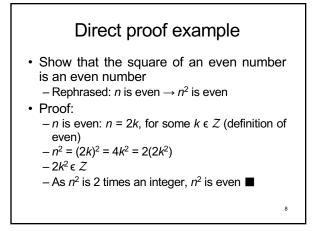
5

Direct proofs

- Consider an implication: p→q
 What if p is true, and q may or may not be
 - true? Show that if p is true, then q is true
- To perform a direct proof, assume that *p* is true, and show that *q* must be true

Definitions of Even and Odd

- *n* is even: $\exists k \in \mathbb{Z}$ such that n = 2k
- *n* is odd: $\exists k \in \mathbb{Z}$ such that n = 2k+1



Proving Existential Statements

- To prove a statement of the form $-\exists x \in D, Q(x)$
- Constructive: find such an x
- · Non-constructive:
 - show that the existence of an x that makes Q(x) true is guaranteed by an axiom or a previously proved theorem – no need to find one
 - assume that there is no such x and show a contradiction

Constructive Existence Proof Example

- Show that a square exists that is the sum of two other squares
 Proof:3² + 4² = 5² ■
- Show that a cube exists that is the sum of three other cubes
 Proof: 3³ + 4³ + 5³ = 6³ ■
 - 10

Non-constructive Existence Proof Prove that either 2x10⁵⁰⁰+15 or 2x10⁵⁰⁰+16 is not a perfect square A perfect square is the square of an integer Proof: The only two perfect squares that differ by 1 are 0 and 1 Thus, any other numbers that differ by 1 cannot both be perfect squares

- Thus, a non-perfect square must exist in any set that contains two numbers that differ by 1 ■
- Note that we didn't need to specify which one $!_{\scriptscriptstyle 1}$

Disproving Universal Statements

- Disproving a statement of the form: $\forall x \in D, P(x) \rightarrow Q(x)$
- Equivalent to showing the negation is true:
 - $-\exists x \in D, P(x) \text{ and } \sim Q(x)$
 - Finding such an *x* is known as finding a counterexample

12

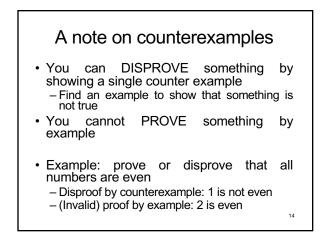
Disproof by Counterexamples

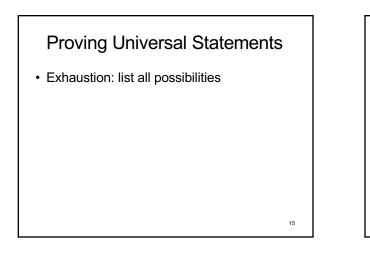
• Every positive integer is the square of another integer

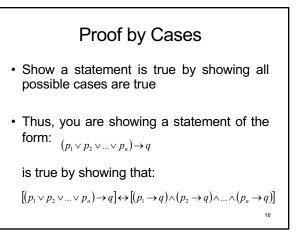
-√2 is not an integer ■

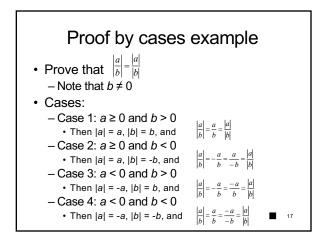
- If the sum of two integers is even, then one of them is even
 -1+3 = 4 ■

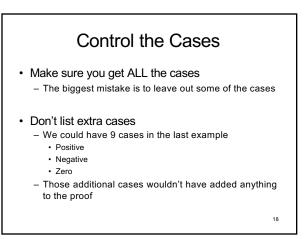
13







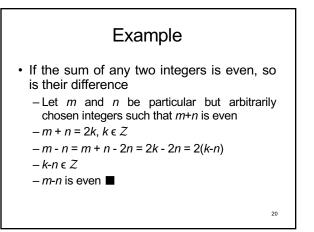


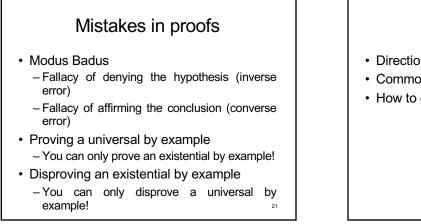


Proving Universal Statements

Generalizing from the generic particular

 show that every element of a set satisfies a certain property and that *x* is an element of such a set





19

Other Pointers

- Directions for writing Proofs
- Common mistakes
- · How to get a proof started

22