1/31/17

Negation of universal
conditionals

~(vx € D, P(x) - Q(x)) = Ix € D, ~(P(x) —
Q(x))

~(vx € D, P(x) —» Q(x)) = 3Ix € D, P(x) A
~Q(x)

For all people x, if x is rich then x is happy

« There is one person who is rich and is not happy
« There is one person who is rich but not happy

Review
* 2’scomplementofa <« 2’s complement of 27
« 2"-a * how many bits? — 8
« 1's complement of a — 00011011,
» Algorithm - 11100100,
— n-bit binary represen- - 11100101,
tation of a * Why does it work?
— negate all bits » How can you tell that a
—add 1 number is negative?
113117
Vv and A

» Given a predicate P(x) and values in the
domain {X, ..., X}

* The universal quantification Vx P(x)
implies:

P(xq) A P(X5) A ... A P(X,)

3 and v

» Given a predicate P(x) and values in the
domain {Xy, ..., X}

* The existential quantification 3Ix P(x)
implies:

P(x,) v P(X,) v ... v P(x,)

Translating from English

« Translate the statements:
— “All hummingbirds are richly colored”
— “No large birds live on honey”
— “Birds that do not live on honey are dull in color”
— “Hummingbirds are small”
» Assign our predicates
— Let P(x) be “x is a hummingbird”
— Let Q(x) be “x is large”
— Let R(x) be “x lives on honey”
— Let S(x) be “x is richly colored”

* Let our domain be all birds
113117

Translating from English

« “All hummingbirds are richly colored”
- Vx P(x) = S(x)
 “No large birds live on honey”
—~(3x Q(x) A R(x)) = VX ~Q(x) v ~R(x)
- Vx Q(x) = ~R(x) = Vx ~Q(x) v ~R(x)
- “Birds that do not live on honey are dull in
color”
- Vx ~R(x) — ~S(x)
» “Hummingbirds are small”
s VX P(X) = ~Q(x)

Restricted Quantifiers

* Arbitrary domain
* Universal

— Vx P(x) — Q(x) versus Vx P(x) A Q(x)
+ Existential

—3x P(x) A Q(x) versus 3x P(x) — Q(x)
» There exists a red dragon
+ dx dragon(x) — red(x)
+ What if x is human? or duck?

113117

1/31/17

Multiple Quantifiers

CS 231
Dianna Xu

113117

Multiple quantifiers

» Let our domain be R

* Vx3y P(x, y)
— “For all x, there exists a y such that P(x,y)
— Example: Vx3y x+y ==

”

« AxVy P(x,y)
— There exists an x such that for all y P(x,y) is
true”

— Example: 3xVy x*y == 0

13117

Order of quantifiers

* IxVy and Vx3y are not equivalent!
* P(x,y) = (x+ty == 0)

—IxVy P(x,y) is false
- vx3y P(x,y) is true

113117

Binding variables

* Let P(x,y) be x>y
» Consider: Vx P(x,y)
— This is not a proposition!
—What is y?
« Ifit's 5, then vx P(x,y) is false
« Ifit's x-1, then Vx P(x,y) is true
« y is a free variable - not “bound” by a
quantifier

13117

Binding variables 2

o (Ix P(x)) v Q(x)

— The x in Q(x) is not bound; thus not a proposition
e (@x P(x)) v (Vx Q(x))

— Both x values are bound; thus it is a proposition
* (I P(x) A Q(x)) v (VY R(y))

— All variables are bound; thus it is a proposition
* (I P(x) A Q(y)) v (VY R(y))

— The y in Q(y) is not bound; this not a proposition

113117

Translating between English and
quantifiers

» The product of two negative integers is positive
— VxVYy (x<0) A (y<0) — (xy > 0)

* The average of two positive integers is positive
— VxVy (x>0) A (y>0) — ((x+y)/2 > 0)

The difference of two negative integers is not
necessarily negative

— Ix3y (x<0) A (y<0) A (x-y=0)

* The absolute value of the sum of two integers
does not exceed the sum of the absolute values
of these integers

— VXYY |x+y| < x| + y]

113117

1/31/17

Translating between English and
quantifiers

e IXVYy Xty =y
— There exists an additive identity for all real numbers
VxVy ((x20) A (y<0)) — (x-y > 0)

— A non-negative number minus a negative number is
greater than zero

IxTy ((x<0) A (y=0)) A (x-y > 0)

— The difference between two non-positive numbers is
not necessarily non-positive (i.e. can be positive)

VxVy ((x#0) A (y#0)) « (xy # 0)

— The product of two numbers is non-zero if and only if

13117 both factors are non-zero

Negating multiple quantifiers

» Recall negation rules for single quantifiers:
— ~(Vx P(x)) = 3x ~P(x)
— ~(3x P(x)) = Vx ~P(x)
— Essentially, you change the quantifiers, and negate
what it's quantifying

« Examples:

- ~(vdy P(x.y))

« =3Ix ~(Jy P(x,y))
« = 3xVy ~P(x,y)

- ~(Vx3yVvz P(x,y,z))
= 3x ~(3yvz P(x,y,z))
= 3IxVy ~(Vz P(x,y,2))

apy = 3IXVyIzZ ~P(xy,z)

Negating multiple quantifiers 2

« Consider ~(Vx3y P(x,y)) = IxVy ~P(x,y)
— The left side is saying “for all x, there exists a y such
that P is true”

— To disprove it (negate it), you need to show that
“there exists an x such that for all y, P is false”

» Consider ~(AxVy P(x,y)) = Vx3y ~P(x,y)
— The left side is saying “there exists an x such that for
ally, Pis true”

— To disprove it (negate it), you need to show that “for

all x, there exists a y such that P is false”
1/31117

Negation examples

* Rewrite these statements so that the negations
only appear within the predicates
a) ~@y3x P(xy))
1. Vy~@3xP(xy))
2. Vyvx ~P(x,y)
b) ~(vx3y P(x,y))
1. Ix ~(3y P(x,y))
2. 3Ixvy ~P(xy)
¢) ~(@yQ(y) A vx ~R(x,y))
1. vy ~(Q(y) A Vx ~R(x,y))
2. vy ~Q(y) v ~(vx ~R(x.y))
3. vy ~Q(y) v IxR(xy)

13117

Negation examples

* Negate the following:
a) vxdyvz T(x,y,z)

1. ~(vVx3yvz T(x,y,2))

2. Ix~@3Fyvz T(x,y,z))

3. IxVy ~(Vz T(x,y,z))

4. 3IxVy3iz ~T(x,y,z)

b) Vxﬂy P(x,y) v Vx3y Q(x,y)
~(vx3y P(x,y) v ¥x3y Q(x,y))
~(vx3y P(x,y)) A ~(¥x3y Q(x,y))
X ~(3y P(x.y)) A 3x ~(3y Q(x.y))

IXVy ~P(x,y) A IxVy ~Q(X,y)

Hwn

113117

1/31/17

Negation

« There is a secret agent
who appeals to all women

* Negation?

* For every secret agent
there is a woman he
doesn’t appeal to.

* Common mistake: There
is a secret agent who
doesn’t appeal to all
women

113117

Prolog

» A programming language using logic!
 Entering facts (propositions):

instructor(xu, cs231).
enrolled(alice, cs231).
enrolled(bob, cs231).
enrolled(claire, cs231).

» Extracting data
?- enrolled (alice, cs231).

Result:
yes

113117

Prolog 2

» Extracting data
?- enrolled(X, cs231).
Result:
alice
bob
Claire
« Entering predicates:
teaches(P,S) :- instructor(P,C), enrolled(s,C).
» Extracting data
?- teaches(X, alice).
Result:
Xu

13117

Arguments with Quantified
Statements

CS 231
Dianna Xu

113117

Vacuous Truth

Presently, all men on the moon are happy.
vx OnTheMoon(x) — Happy(x)

* There is no man on the moon presently.
Vvx OnTheMoonPresently(x) — Happy(x)
The statement is vacuously true.

Presently, all men on the moon are
dinosaurs.

13117

Universal Instantiation

* VxeD, P(x)

* Xg€D

* P(xo)

* Example:

* All men are mortal.
» Socrates is a man.
» Socrates is mortal.

113117

Existential Generalization

* P(xo)
* Xg€D
* Ix e D, P(x)

13117

1/31/17

Universal Modus Ponens

p P(a)
p—=>q Vx,P(x)—0O(x)

q 2.0(a)

113117

Universal Modus Tollens

~q ~Q(a)
p—q Vx,P(x)—Q0x)
S~ P ..~ P(a)

13117

Universal Transitivity

Vx,P(x) = Q(x)
Vx,0(x) = R(x)
S Vx,P(x)— R(x)

113117

Example of proof

» Given the hypotheses:

— “Linda, a student in this class, owns
a red convertible.”

. C(Linda)
— " Everybody who owns a red R(Linda)
convertible has gotten at least one
speeding ticket” VX (RX)—T(X))
« Can you conclude: “Somebody in
this class has gotten a speeding 3x (C(X)AT(x))

ticket”?

13117

113117

No o~

Example of proof

VX (R(X)—>T(x)) 3" hypothesis

R(Linda) — T(Linda) Universal instantiation using step 1
R(Linda) 2" hypothesis

T(Linda) Modes ponens using steps 2 & 3
C(Linda) 1t hypothesis

C(Linda) A T(Linda) Conjunction using steps 4 & 5

3x (C(x)AT(x)) Existential generalization using|

step 6

Thus, we have shown that “Somebody in
this class has gotten a speeding ticket”

1/31/17

Abduction

« A form of logical
inference that goes

from observation to Pr——
a hypothesis that

accounts for the /
reliable data [

pneumonia \
\

¢ The lawn is wet — It
rained last night

113117

Diagrams for Validity
0 * To check the validity
// of an argument
‘ //' ‘ « NOT a proof!
\ N /
NS
lives forever
13117
Common Errors
« Converse error * Inverse error

Q(a) ~ P(a)
Vx, P(x) = O(x) Vx,P(x) = Q(x)

. P(a) s~ Q0(a)

13117

Example

* Anyone who grows a money tree is rich
* Bill Gates is rich
* Bill Gates grows a money tree

* Bill Gates does not grow a money tree
* Bill Gates is not rich

113117

» Every Great American City Has At Least
One College. Worcester Has Ten.
— Highway billboard in Worcester, MA

13117

