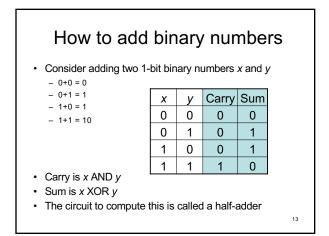
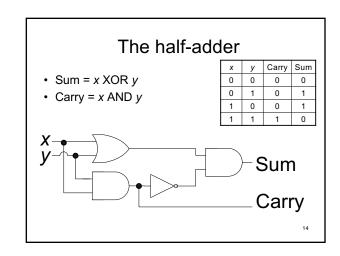
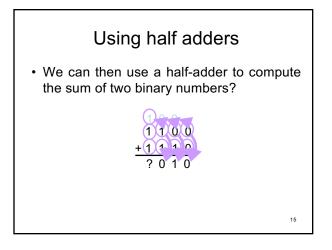
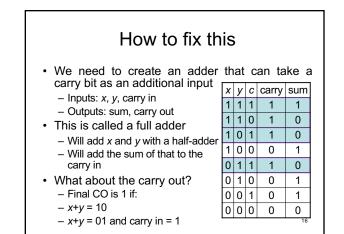
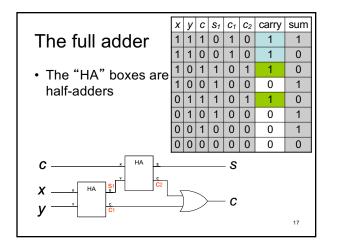

	Table 1.5.3		
Hexadecimal	Decimal	Hexadecimal	4-Bit Binary Equivalent
Поласовітнаї	0	0	0000
	1	1	0001
 Often written with a 	2	2	0010
'0x' prefix	3	3	0011
-	4	4	0100
– 0x10 is 10 ₁₆ or 16 ₁₀	5	5	0101
 – 0x100 is 100₁₆, or 256₁₀ 	6	6	0110
 Binary numbers easily 	7	7	0111
translate:	8	8	1000
	9	9	1001
 In blocks of 4 	10	А	1010
	11	В	1011
	12	С	1100
	13	D	1101
	14	Е	1110
	15	F	1111

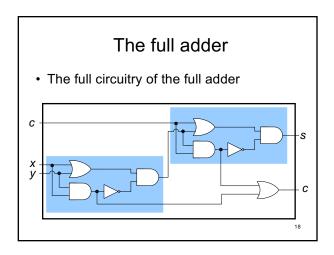


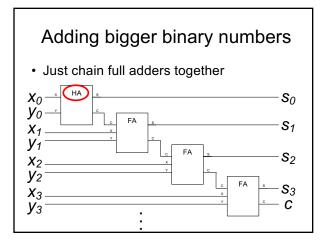


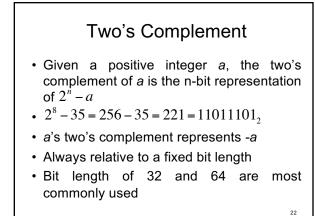











Parallel adders and number of gates

- A half adder has 4 logic gates
- A full adder has two half adders plus an OR gate
 Total of 9 logic gates
- To add *n* bit binary numbers,
 1 HA + *n*-1 FAs
- To add 32 bit binary numbers,
 1 HA + 31 FA = 4+9*31 = 283 logic gates
- To add 64 bit binary numbers,
- 1 HA + 63 FA = 4+9*63 = 571 logic gates

20

More about logic gates

- To implement a logic gate in hardware, you use a transistor
- Transistors are all enclosed in an "IC", or integrated circuit
- 1971 Intel's first microprocessor (4004): 2300 transistors
- 1993 Intel Pentium processor: 3.1 million
- 2006 Dual-core Itanium 2: 1.7 billion
- 2011 10-core Xeon Westmere-Ex: 2.6 billion
- 2015 SPARC M7: 10 billion

One's Complement

- An easier way to calculate two's complement
- $2^8 a = (2^8 1) a + 1$
- $2^8 1 = 11111111_2$
- Subtracting any binary number from all 1's is equivalent to negating all bits, i.e. taking the one's complement

23

21

Example

$$2^8 - 35 = (2^8 - 1) - 35 + 1 =$$

1111111112

-

 00100011_2 $11011100_2 + 1 = 11011101_2 = 221$

24

Two's Complement Again

- To find the two's complement of a positive integer *a*:
 - Write the n-bit binary representation for a
 Negate all bits
 - Add 1 to the resulting binary notation

8-bit Representations

Integer	8-bit Binary	2's complement
127	0111111	
126	0111110	
2	00000010	
1	0000001	
0	00000000	
-1	11111111	2^8 - 1
-2	11111110	2^8 - 2
-3	11111101	2^8 - 3
-127	1000001	2^8 - 127
-128	1000000	2^8 - 128

Addition with Negative Numbers

25

27

64-15 = 64 + (-15) = $01000000_2 + ((11111111_2 - 00001111_2) + 1_2) =$ $01000000_2 + 11110001_2$ 01000000_2 11110001_2 $00110001_2 = 49$ From ThinkGeek (http://www.thinkgeek.com) There are only 10 types of people in the world: Those who understand binary and those who don't.