Review

- p→q ≡
- $(p \lor q) \land \sim (p \land q)$
- ~p v q
- $\sim (p \land q) \equiv$
- Contrapositive:
- ~p v ~q
- ~q→~p
- $\sim (p \vee q) \equiv$
- Inverse:
- ~p ∧ ~q
- ~p→~q
- p is sufficient for q
- · Converse:
- p→q
- q→p
- p is necessary for q
- p⊕q ≡
- ~p→~q

Valid and Invalid Arguments

CS 231 Dianna Xu

2

Review

- · Associative Law:
 - $-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
- · Distributive Law:
 - $-p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
 - $-p\vee(q\wedge r)\equiv(p\vee q)\wedge(p\vee r)$
- · Absorption Law:
 - $-p \lor (p \land q) \equiv p$
 - $-p \wedge (p \vee q) \equiv p$

3

Definitions

- An argument is a sequence of statements (statement forms).
- All statements in an argument except for the last one, are called premises. (assumptions, hypotheses)
- · The final statement is the conclusion.
- A valid argument means the conclusion is true if the premises are all true, with all combinations of variable truth values.

.

Examples

- All Greeks are human and all humans are mortal; therefore, all Greeks are mortal.
- Some men are athletes and some athletes are rich; therefore, some men are rich.
- Some men are swimmers and some swimmers are fish; therefore, some men are fish.

Modus Ponens

p

 $p \rightarrow q$

.·. a

6

Modus Ponens example

- · Assume you are given the following two statements:
 - "you are in this class"

- "If you are in this class, you are a student"

 $p \rightarrow q$ ∴ q

• Let p = "you are in this class"

• Let q = "you are a student"

· By Modus Ponens, you can conclude that you are a student.

Modus Ponens

• Consider $(p \land (p \rightarrow q)) \rightarrow q$

р	q	р→q	<i>p</i> ∧(<i>p</i> → <i>q</i>)	$(p \land (p \rightarrow q)) \rightarrow q$
Т	Т	Т	T	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

∴ q

Modus Tollens

- Assume that we know: $\sim q$ and $p \rightarrow q$ – Recall that $p \rightarrow q \equiv \sim q \rightarrow \sim p$
- Thus, we know $\sim q$ and $\sim q \rightarrow \sim p$
- We can conclude ~p

Modus Tollens example

· Assume you are given the following two statements:

- "you are not a student"

- "if you are in this class, you are a student"

 $\sim q$ $p \rightarrow q$

- Let p = "you are in this class"
- Let q = "you are a student"
- · By Modus Tollens, you can conclude that you are not in this class

Generalization & Specialization

· Generalization: If you know that p is true, then $p \vee q$ will ALWAYS be true

 $\therefore p \vee q \quad \therefore p \vee q$

 Specialization: If p ∧ q is true, then p will ALWAYS be true

 $p \wedge q$

Example of proof

- We have the hypotheses:
- "It is not sunny this afternoon and it is colder than yesterday"
- "We will go swimming only if it is sunny"

- "If we do not go swimming, then we will take a canoe trip"

"If we take a canoe trip, then we will be home by sunset"

Does this imply that "we will be home by sunset"?

~p ∧ q

Example of proof

- 1. ~p ∧ q
- 1st hypothesis
- 2. ~p
- Specialization using step 1
- 3. $r \rightarrow p$
- 2nd hypothesis
- 4. ~r
- Modus tollens using steps 2 & 3
- 5. $\sim r \rightarrow s$
- 3rd hypothesis
- 6. s
- Modus ponens using steps 4 & 5
- 7. $s \rightarrow t$
- 4th hypothesis

p

∴ q

- 8. t
- Modus ponens using steps 6 & 7
- $p \wedge q$
- $p \rightarrow q$
- ∴ p
- $p \rightarrow q$ ∴~ *p*
 - 13

More rules of inference

- Conjunction: if p and q are true separately, then $p \wedge q$ is
- p q $\therefore p \land q$
- Elimination: If $p \lor q$ is true, and p is false, then q must be
- $p \vee q$ $p \vee q$ ~ q $\therefore q$
- Transitivity: If $p \rightarrow q$ is true, and $q \rightarrow r$ is true, then $p \rightarrow r$ must be true
- $p \rightarrow q$ $q \rightarrow r$

 $\therefore p \rightarrow r$ 14

Even more rules of inference

- · Proof by division into cases: if at least one of p or q is true, then r must be true
- $p \rightarrow r$ $q \rightarrow r$
- Contradiction rule: If $\sim p \rightarrow c$ is true, we can conclude p (via the contra-positive)
- $\sim p \rightarrow c$
- Resolution: If pvg is true, and $\sim p \vee r$ is true, then $q \vee r$ must be true
- $p \vee q$ $\sim p \vee r$ ∴q∨r
- Not in the textbook

15

Example of proof

- Given the hypotheses:
 - "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on'
 - "If the sailing race is held, then the trophy will be awarded"
- "The trophy was not awarded"
- Can you conclude: "It rained"?

 $(\sim r \vee \sim f) \rightarrow$ $(s \wedge l)$

16

Example of proof

- 3rd hypothesis 1. ~t 2nd hypothesis 2. $s \rightarrow t$
- Modus tollens using steps 1 & 2 3. ~s
- $(\sim r \lor \sim f) \rightarrow (s \land l)$ 1st hypothesis 4.
- $\sim (s \wedge I) \rightarrow \sim (\sim r \vee \sim f)$ Contrapositive of step 4
- 6. $(\sim s \lor \sim l) \rightarrow (r \land f)$ DeMorgan's law and double negation law Generalization using step 3 7. ~sv~/
- r∧f Modus ponens using steps 6 & 7 9. r Specialization using step 8
 - p ~q $p \rightarrow q$ $p \wedge q$ $p \rightarrow q$ p ∴~ p^{-17} $\therefore p \lor q$ ∴ *p* ∴ q

Fallacy of the Modus Badus converse

Fallacy of affirming the conclusion

- · Consider the following:
- $p \rightarrow q$ $\sim q \rightarrow \sim p$ ∴ *p* $\dot{.}.~p$
- · Is this true?

р	q	p→q	$q \land (p \rightarrow q)$	$(q \land (p \rightarrow q)) \rightarrow p$
Τ	Т	Т	T	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	Т
	р Т Т F	P q T T T F F T F F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Not a valid rule!

3

Fallacy of

Modus Badus example

- Assume you are given the following two statements:
 - "you are a student"

 $p \rightarrow q$ ∴ *p*

- "If you are in this class, you are a student"

- Let p = "you are in this class"
- Let q = "you are a student"
- It is clearly wrong to conclude that if you are a student, you must be in this class

Fallacy of the inverse Modus Badus denying the hypothesis									
• Consider the following: $\sim p$									
• Is this true?									
р	q	р→q	~p∧(p→q))	$(\sim p \land (p \rightarrow q)) \rightarrow \sim q$	Not a				
Т	Т	Т	F	Т	valid				
T	F	F	F	Т	rule!				
F	Т	Т	Т	F	Tuio.				
F	F	Т	T	Т					

Fallacy of the

Modus Badus example

Assume you are given the following two statements:

- "you are not in this class"

~p

- "if you are in this class, you are a student"

 $p \rightarrow q$ ∴~ *q*

- Let p = "you are in this class"
- Let q = "you are a student"
- · You CANNOT conclude that you are not a student just because you are not taking Discrete Math