Boolean Logic

CS 231
Dianna Xu

117117

Proposition/Statement

» A proposition is either true or false — but
not both
— “The sky is blue”
— “Lisa is a Math major”
a— “X == ”

* Not propositions:
— “Are you Bob?”
-“x:=7"

Boolean variables

« We use Boolean variables to refer to
propositions
—Usually denoted with lower case letters
starting with p (i.e. p, g, r, s, etc.)

—A Boolean variable can have one of two
values true (T) or false (F)

* A proposition can be...
— A single variable: p
— A compound statement: pA(qv~r)

Introduction to Logical Operators

» About a dozen logical operators
— Similar to algebraic operators + * - /
* In the following examples,
—p = “Itis Tuesday”
—q="Itis 9/3”

Logical operators: Not

* Negation

* Not switches (negates) the truth value

* Symbol: ~ or — o ~p
e In C/C++ and Java, T F
the operand is ! F T

+ ~p = “Itis not Tuesday”

Logical operators: And

+ Conjunction
» And is true if both operands are true

* Symbol: A
In C/C++ and Java,
the operand is &&

pAgq

A H
M4 M4 Q
m|m|m |-

* paq = “ltis Tuesday and
it is 9/3”

Logical operators: Or

+ Disjunction

» Oris true if either operands is true

117117

* Symbol: v pvq

* In C/C++ and Java,

the operand is | |

Symbol: ® p q | p®q
» Often called XOR T T F
* pg=(pva)A~p~rq) T F | T
* In Java, the operand is » F T T
(but not in C/C++) E E E

M4
M4 M 4H|Q
||

* pvq = “ltis Tuesday or
it is 9/3 (or both)” 7

Logical operators: Exclusive Or

» Exclusive Or is true if one of the operands are true, but

false if both are true

* p®q = “Itis Tuesday or it

is 9/3, but not both”

Inclusive Or versus Exclusive Or

* Do these sentences mean inclusive or
exclusive or?
— Experience with C++ or Java is required
— Lunch includes soup or salad

—To enter the country, you need a passport or
a driver’s license

— Publish or perish

Logical Equivalence

« Two statements are logically equivalent if

and only if they have identical truth values
for all possible substitutions of statement
variables

-p=q

Conditional

- A conditional means “if p then q”or “p implies q”
+ Symbol: —»

. p—q=“Ifitis p q p—q |~pVvq
Tuesday, then T T T T
itis 9/3” T F F E

*P=a="PVvg F T T T

F F T T

the the

antecedent consequent

Conditional 2

Let p = “l am elected” and g = “I will lower taxes”

5\, im gwer It; I)(:;rlelected, then | P q |p—q
T| T | T
T | F F

The statement doesn’t say FIl T T

anything about ~p E E T

If ~p, then the conditional is true
regardless of whether q is true or false

117117

Conditional 3
Conditional Inverse Converse Contra-
positive
Plq|~p|~q| pP>q | ~p>~q | Gop | ~go>p
T|T|F|F T T T T
T|IF|F|T F T T F
FIT| T|F T F F T
FIF| T|T T T T T

* The conditional and its contra-positive are
equivalent

« So are the inverse and converse

Logical operators: Conditional 4

« Alternate ways of stating a conditional:
—p implies q
~Ifp,q
— p is sufficient for g
—-qifp
— g whenever p

— q is necessary for p (if ~q then ~p)
—ponlyifq

Bi-conditional

”

« A bi-conditional means “p if and only if g

* Symbol: < A 7 |pog
* |Alternatively, it means
“(if p then q) and T T T
(if g then p)” T|F|F
* p&3G=pogAGop F, T F
» Note that a bi-conditional F F T

has the opposite truth values
of the exclusive or

Bi-conditional

« Let p = “You get a grade” and g = “You take this
class”

* Then p<>q means p q_|peq
“You get a grade if and T T T
only if you take this class” T F F

F|IT|F

« Alternatively, it means “If F F T

you get a grade, then
you took (take) this class and if you take (took)
this class then you get a grade”

16

Boolean operators summary

not | not | and | or | xor | conditional bi-
conditional
Pl q|~pP|~q|Prq|pVvqg| pPg p—q peoq
T|T|F | F T T F T T
T|IF|F | T F T T F F
F|T| T]|F F T T T F
FIF| T | T F F F T T

* Learn what they mean, dont just
memorize the table!

Precedence of operators

* Precedence order (from highest to lowest):
~AYV /D &

— The first three are the most important

* Not is always performed before any other
operation

117117

Translating English Sentences

» Problem:
— p = "“Itis below freezing”
— g = “ltis snowing”
* Itis below freezing and it is snowing prq
+ ltis below freezing but not snowing pr~q
« ltis not below freezing and it is not snowing ~ ~PA~q

It is snowing or below freezing (or both) pvq

If it is below freezing, it is also snowing p—q

- |t is either below freezing or it is snowindgPva)A(P—~q)
but it is not snowing if it is below freezing

» That it is below freezing is necessary and p<q

sufficient for it to be snowing

Tautology and Contradiction

« A tautology t is a statement that is always

true
—pv~pwi

Il always be true

(Negation Law)

¢ A contradiction ¢ is a statement that is
always false

—pA~pwi

Il always be false

(Negation Law)

p_|pv~p

pA~p

T T F

F T F w

DeMorgan’s Law

+ Probably the most important logical equivalence
 To negate pAg (or pvq), you “flip” the sign, and
negate BOTH p and q
—Thus,~(pAQ)=~pv~q
—Thus, ~(pv @) =~pAr~q

pla[~P[~q]PAq[~(PAQ)~pv~q[pval~(pva)[~Pr~q
TTFIF|T| F | F [T| F | F
TFFIT|[F| T | T [T| F | F
FTT[FIF] T [T |[T| F | F
FFIT[T|F] T | T |F| T | T

21

Logical Equivalences

Communicative PAQEQAP pvqgEqvp
Associative (PAQ)Ar = pA(gar) (pva)vr = pv(qvr)
Distributive pA(gvr) = (PAg)V(PAD)| pv(gAar) = (pv@)A(pvr)

Identity pAt=p pVvCcEp
Negation pv~p=t pA~p=c

Double Negative ~(~p)=p
Idempotent PAPEP pPVPEpP

Universal bound pAc=c pvt=st
De Morgan’s ~(Prg)=~pv~q | ~(pvq)=~pr~q
Absorption pv(ppArQ)=p pAr(pvq)=p

Negation of t and ¢ ~t=c ~c=t

How to prove two propositions
are equivalent?

+ Two methods:
— Using truth tables

» Not good for long formulae

« Should not be your first method to prove logical
equivalence!

— Using the logical equivalences and laws
* The preferred method

* Example: show that:
(por)vig-nr=(prg)—>r

23

Using Truth Tables

(p=>r)vig—>r)=(prg)—>r

pla[r[p—r[a —r|(p—r)v(a —r)| PAq| (PAq) —r
TT[T[T[T T T T
T[T[F| F [F F T| F
TF[T[T T T FI T
TIF[F[F| T T FI T
FITIT| T T T FI T
FITIF| T F T FI T
FIFIT| T[T T FI T
FIFIF| T T T FI T 2

Using Logical Equivalences

=2r)vig=on=@eagor

Original statement
(~ p vefnltioq of insircdtion) g =~ pV q

(~ p \DMdrgapts ibps (~Hp~ q) ¥ pV ~ ¢
~Assaciatvijwaf O (PVpNG YV (~ gV)=~ pVIv~qgVvr
'V .
~ pv Rg-amangisg- pv ~gVvr
Ideppotegty-pt s py =g v r

25

117117

Using Logical Equivalences

(po>r)vig—or=(prg)>r
(~pvr)v(~qvr)=~(pag)Vvr
(~pvr)v(~qvr)=(~pv~q)Vvr

~PpVIV~gVFr=~pvV~qgVvr
~PpV~gVIrVr=~pv~qgVvr

~pV~gVr=~pv~qvVvr

Original statement
Definition of implicatiorn]
DeMorgan’s Law
Associativity of Or
Re-arranging

Idempotent Law

