

Logical operators: Or

- Disjunction
- Or is true if either operands is true
- Symbol: v
- In C/C++ and Java, the operand is ||

rue		
р	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

9

p∨*q* = "It is Tuesday or it is 9/3 (or both)"

Logical operators: Exclusive Or

- Exclusive Or is true if one of the operands are true, but false if both are true
- Symbol: ⊕
- Often called XOR
- $p \oplus q \equiv (p \lor q) \land \sim (p \land q)$
- In Java, the operand is ^ (but not in C/C++)

p	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F
F	F	F

10

p⊕*q* = "It is Tuesday or it is 9/3, but not both"

Logical Equivalence • Two statements are logically equivalent if and only if they have identical truth values for all possible substitutions of statement variables $-p \equiv q$

Inclusive Or versus Exclusive Or

- Do these sentences mean inclusive or exclusive or?
 - Experience with C++ or Java is required
 - Lunch includes soup or salad
 - To enter the country, you need a passport or a driver's license
 - Publish or perish

14

	Conditional 3						
				Conditional	Inverse	Converse	Contra- positive
p	q	~p	~q	p→q	~p→~q	q→p	~q→~p
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	Т	Т	Т	Т
•	The conditional and its contra-positive are equivalent						

So are the inverse and converse

Logical operators: Conditional 4

- Alternate ways of stating a conditional:
 - -p implies q
 - lf *p*, *q*
 - -p is sufficient for q
 - -q if p
 - q whenever p
 - -q is necessary for p (if $\sim q$ then $\sim p$)
 - -p only if q

13

Bi-conditional • Let *p* = "You get a grade" and *q* = "You take this class" р q p↔q • Then $p \leftrightarrow q$ means Т Т Т "You get a grade if and Т F F only if you take this class" F Т F F F Т • Alternatively, it means "If

you get a grade, then you took (take) this class and if you take (took) this class then you get a grade"

1			not	not	and	or	vor	conditional	bi	1
			not	not	anu		701	conunional	conditional	
	р	q	~p	~q	p∧q	p∨q	p⊕q	$p \rightarrow q$	p⇔q	
	Т	т	F	F	Т	Т	F	Т	Т	
	Т	F	F	Т	F	Т	Т	F	F	
	F	Т	Т	F	F	Т	Т	Т	F	
	F	F	Т	Т	F	F	F	Т	Т	
• L	Learn what they mean, don't jus memorize the table!								ust	

Translating English Sentences Problem: p = "It is below freezing" q = "It is snowing" p∧q · It is below freezing and it is snowing $p \wedge \neg q$ It is below freezing but not snowing ~p^~q It is not below freezing and it is not snowing $p \lor q$ • It is snowing or below freezing (or both) $p \rightarrow q$ • If it is below freezing, it is also snowing It is either below freezing or it is snowing $p \lor q \land (p \to \neg q)$ but it is not snowing if it is below freezing That it is below freezing is necessary and $p \leftrightarrow q$ sufficient for it to be snowing 19

Tautology and Contradiction • A tautology **t** is a statement that is always true $-p \lor \sim p$ will always be true (Negation Law) • A contradiction **c** is a statement that is always false $-p \wedge \sim p$ will always be false (Negation Law) $p \lor \sim p$ $p \wedge \sim p$ р т Т F F Т F 20

Т

F

т

Т

Т

21

Logical Equivalences

Communicative	$p \land q \equiv q \land p$	$p \lor q \equiv q \lor p$			
Associative	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$			
Distributive	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$			
Identity	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$			
Negation	$p \lor \sim p \equiv \mathbf{t}$	$p \land \neg p \equiv c$			
Double Negative	~(~ <i>p</i>) ≡ <i>p</i>				
Idempotent	$p \land p \equiv p$	$p \lor p \equiv p$			
Universal bound	$p \wedge \mathbf{c} \equiv \mathbf{c}$	$p \lor \mathbf{t} \equiv \mathbf{t}$			
De Morgan's	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$			
Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$			
Negation of t and c	~t ≡ c	~c ≡ t			
		•			

How to prove two propositions are equivalent?

Two methods:

Using truth tables

FFTFF

- Not good for long formulae
- Should not be your first method to prove logical equivalence!
- Using the logical equivalences and laws
 The preferred method

• Example: show that:

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

23

Using Logical Equivalences

 $(\underline{p} \rightarrow \underline{r}) \lor (\underline{q} \rightarrow \underline{r}) \equiv (\underline{p} \land \underline{q}) \rightarrow \underline{r}$ Original statement

 $(\sim p \lor p) \to q = \sim p \lor q$

 $(\sim p \lor \mathbf{De}) \lor \mathbf{d}(\mathbf{rgap} \lor \mathbf{k}) = (\sim p(\mathbf{p} \land \mathbf{q}) \neq \mathbf{r} p \lor \sim q$

 $\sim Apsociative dy vot (p \lor p \lor q) \lor (\sim q \lor r) = \sim p \lor r \lor \sim q \lor r$ $\sim p \lor Rq \lor urangi = p \lor \sim q \lor r$

Idenpotent La ₩ py = q v r

25

Using Logical Equivalences

 $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$ $(\sim p \lor r) \lor (\sim q \lor r) \equiv \sim (p \land q) \lor r$ $(\sim p \lor r) \lor (\sim q \lor r) \equiv (\sim p \lor \sim q) \lor r$ $\sim p \lor r \lor \sim q \lor r \equiv \sim p \lor \sim q \lor r$ $\sim p \lor \sim q \lor r \lor r \equiv \sim p \lor \sim q \lor r$ $\sim p \lor \sim q \lor r \equiv \sim p \lor \sim q \lor r$

Original statement Definition of implication DeMorgan's Law Associativity of Or Re-arranging Idempotent Law

26