CS 231 Review Question Solutions 03/31/16

1. Prove that if m is an even integer, then m + 7 is odd. Do this proof in three ways: direct proof, proof
by contraposition and proof by contradition.

(a)

(b)

Direct Proof: Assume that m is an even integer. Then Jk € Z such that m = 2k. Then
m+T7=2k+7=2k+6+1=2k+2x3+1=2(k+3)+ 1. Since k and 3 are integers, k + 3 is
an integer, so 2(k 4 3) is an even integer. Hence m 4+ 7 = 2(k + 3) 4+ 1 is an odd integer. B

Proof by Contraposition: We will prove that if m 47 is an even integer, then m is an odd integer.
Proof: If m + 7 is even, then 3k € Z such that m +7 =2k. Thus m =2k —-7=2k—-2x3—-1=
2(k —3) — 1. Since k and 3 are integers, k — 3 is an integer, so 2(k — 3) is an even integer. Hence
m =2(k—3) —1is an odd integer. W

Proof by Contradiction: Assume Im € Z such that m is even and m + 7 is even. Then 3k, j € Z
such that m = 2k and m + 7 = 2j5. Thus m = 2k and m = 25 — 7, so that 2k = 25 — 7, or
2(k — j) = —7. Since k and j are integers, k — j is an integer, thus —7 is an even integer, a
contradiction. Thus the assumption is false, and the original statement is true.

2. Using proof by contradiction, prove that Vn € Z,4 1 (n? + 2)
Suppose that In € Z, 4|(n? + 2). By definition of divisibility, 3k € Z, such that 4k = n? + 2. Rewrite
as n? = 4k — 2 = 2(k — 1), which indicates that n? is even and thus n is even. By definition of
even numbers, 3¢ € Z, such that n? = (2¢)? = 4¢®>. n? = 4¢? indicates that n? is divisible by 4.
Previously, we assumed n? + 2 is also divisible by 4. n? and n? + 2 can not both be divisible by 4,
hence contradiction. W

3. Using induction, prove that for all integers n > 1,22" — 1 is divisible by 3, i.e. 3[22" —1

Base case: n = 1: 22%! — 1 =3 and 3|3.
Inductive hypothesis: assume 3[22% —1 = 2%% —1=3¢,¢€Z
Prove for k£ + 1:

92(k+1) _ 1 92k+2 _

2%k w4 -1

2%k 34 2%k 1
= 2" x3+43¢

= (2% +¢)x3

q € Z and 2%¢ € Z, thus 3[22(-+D) — 1. &

4. Given sets A, B, and C' in the same universe, determine if each of the following statements is true or
false. If it is true, then prove it. If it is false, then give a counter example.

(a)
(b)
(c)

CCANCCB—-CCAUB

Proof: Let x € C. Since C C A and C C B, x € A and « € B. Thus by definition, r € AN B. A
CCAUB—-CCAANCCRB

This is false. A counter example is given for example by A = {1,2}, B = {3,4} and C = {2, 3}.
AN (AUB)=B\A.

Algbraic proof: AN (AUB)=(A°NA)UA°NB)=0U(A°NB)=ANnB=B\A. 1
Alternatively: show that A°N(AUB) C A\ Band A\ BC A°N(AUB)

A°N(AUB) C A\ B: Let x be an arbitrary element in A°N (AU B), by definition, € A® and
x € (AU B), which is equivalent to z ¢ A and (x € A or x € B), and it follows that = ¢ A and
x € B, which is by definition x € B\ A



A\ B C A°N (AU B): Let x be an arbitrary element in A\ B. by definition, € B and z ¢ A.
r€B—sre(AUB)and z ¢ A —» 2 € A°. Thus ¢ € (AU B) and x € A€, by definition,
reA°N(AUB). 1

5. Prove that give a set S, the cardinality of its power set is 2/5I.
Do an induction on |S].
Base case: |S| = 0, which means S is the empty set. The power set of the empty set contains one
element, the empty set itself. Thus |P(@)| =1 = 2° = 29I,
Inductive hypothesis: |S| = k, and |P(S)| = 2*
Prove for |S| =k + 1:
For the first k elements in S, we construct their power set, say P(Sj), which by the inductive hypothesis,
has 2* elements. All these elements must be in the power set of P(S). The rest of the power set consist
of all possible subsets that contain the (k + 1)-th elemement, and we form these subsets by adding
the (k + 1)-th element to every set found in P(Sk). And there are 2F of these subsets. Therefore
|P(S)| =2F42F =2k 1

6. Prove that if aq,as,...,a, are n distinct real numbers, exactly n — 1 multiplications are needed to
compute the product of these n numbers, no matter how parentheses are inserted into their product.
Proof by strong induction:

Base case: n = 1: The product a; requires 1 — 1 = 0 multiplication.

Inductive hypothesis: assume that a; X as X ... X ay require k — 1 multiplications, Vk,1 < k < n.
Inductive step: Consider the last multiplication (any last multiplication no matter how the parentheses
are inserted) used to compute the product of a1 X ag X ... X ap41. It must be the product of k of these
numbers and n + 1 — k of these numbers, for some k, 1 < k < n. By the inductive hypothesis, those
two products requires k — 1 and n — k multiplications, respectively. Counting the last multiplication,
the total multiplications needed for a3 X ag X ... X ap41 is thus (k—1)+(n—k)+1=n=(n+1)—1.
]

7. For each of the following, give a recursive definition. Remember to indicate the initial terms or base:

(a) a, = Zz
i=0

ag = O,_ak =ap_1+k

(b) The sequence that generates the terms 3, 6, 12, 24, 48, 96, 192, ...
ap = 3, ar = 2ap—1

(¢) The set of non-negative even numbers
0eS, xS —x+2¢€ S, nothing else is in S.

(d) The set of all even numbers
0eS,zeS—z+2€SANxeS—ax—2¢€8, nothing else is in S.

8. Find explicit formulae for the following recursively defined sequences, and prove correctness using
induction.

(a) ap =k —ag-1, ¥k > 1, a9 = 0.

ap = 0

ag = l—ag=1-0=1
a = 2—a1=2—-1=1
a3 = 3—ax=3—-1=2
ag = 4d—a3=4-2=2
as = S5—as4=5—-2=3
ag = 6—a5=6—-3=3

Guess: a; = [£]



Proof by strong induction:

Base case: ag =0 = [3]
Inductive hypothesis: a; = [%], Vi,0 <i < k

Inductive step:
apr1 =k+1—ag by definition
k
=k+1- f§] by inductive hypothesis

p
k+1—% ifk+1isodd (kis even)

w if k41 is even
264Dk if k41 s odd
B ifk+1iseven
EX2if k+ 1 is odd
k+1

= T] by definition of ceiling

_ kt1 i i
= { k+ if &+ Lis even (k is odd) by definition of ceiling

|
(b) ap = QCLk_z, vk > 2, ag = 1,(11 = 2.

ag = 1=2°

ap = 2=2

as = 2a9=2x2' =21
as = 2a; =2x2' =22
ay = 2a9=2x2'=22
a5 = 2a3=2x2%=23
ag = 2a4=2x22=23

Guess: ap = ol5]

Proof by strong induction:

Base case: ag =1 =29 = 2[%]_ and aq =2 =2 = 2031
Inductive hypothesis: a; = 21 vi0<i<k
Inductive step:

Oft1 = 2051 by definition
=2 x 2l*%] by inductive hypothesis
k—1
2x272 ifk—1iseven
= _ by definition of ceilin
{2><2’° ik — 1 s odd Y &

2%+l if k — 1 is even
25+l if k—1is odd

=2 ifk—11isodd

272 ifk+1iseven .
k + 1 and k£ — 1 have the same parit
2" if k41 s odd " v e Aty

{ 2% if k —11is even
2

by definition of ceiling



9. Prove the correctness of the following algorithm:

[Pre-condition: i=1 and sum=0]
while(i<=100)
sum := sum + i
i=1i+1
end while
[Post-condition: sum = 1 + 2 + ... + 100]

State your loop invariant clearly.

Loop invariant: I(n) :i=n+1land sum=1+..4+n

(a) Base case:
S 1=0+1=1 by the loop invariant
[0):in=0= { sum =0 no addition performed, 0 < 1

which matches the pre-condition
(b) Inductive: Assume that before an arbitrary iteration k + 1, I(k) is true, i.e. ¢ = k+ 1 and
sum=14+..+k
loop iteration execution:
sum := sum + i = sum=1+..+k+ (k+1)
ir=i+l=>i=k+2
Thus I(k + 1) is true after one loop iteration
(c) Eventual falsity of guard: ¢ starts at 1 and is incremented at each iteration until < 100 is violated,
which is at 7(100).

(d) Correctness of post-condition: I(100) : ¢ = 101 and sum = 1 + ... + 100, which matches the
post-condition. W

10. Given the following recursive definition of a set S:

e Basis: A e S

e Recursive: x € S — axac S

Prove using structural induction, that Vs € S,|s| is even.

Base case: |A] =0, 0 is even.

Inductive hypothesis: assume all strings of length n in S have even length, thus n is even.

Recursive step:

We construct s = axa, by the recursive definition, where || = n. Thus |s| =1+ |2|+ 1 =n+ 2. By
the inductive hypothesis, n is even, n 4 2 is also even, thus |s| is even. B



