
CS 231 Review Question Solutions 03/31/16

1. Prove that if m is an even integer, then m+ 7 is odd. Do this proof in three ways: direct proof, proof
by contraposition and proof by contradition.

(a) Direct Proof: Assume that m is an even integer. Then ∃k ∈ Z such that m = 2k. Then
m+ 7 = 2k + 7 = 2k + 6 + 1 = 2k + 2× 3 + 1 = 2(k + 3) + 1. Since k and 3 are integers, k + 3 is
an integer, so 2(k + 3) is an even integer. Hence m+ 7 = 2(k + 3) + 1 is an odd integer. �

(b) Proof by Contraposition: We will prove that if m+ 7 is an even integer, then m is an odd integer.
Proof: If m+ 7 is even, then ∃k ∈ Z such that m+ 7 = 2k. Thus m = 2k − 7 = 2k − 2× 3− 1 =
2(k− 3)− 1. Since k and 3 are integers, k− 3 is an integer, so 2(k− 3) is an even integer. Hence
m = 2(k − 3)− 1 is an odd integer. �

(c) Proof by Contradiction: Assume ∃m ∈ Z such that m is even and m+ 7 is even. Then ∃k, j ∈ Z
such that m = 2k and m + 7 = 2j. Thus m = 2k and m = 2j − 7, so that 2k = 2j − 7, or
2(k − j) = −7. Since k and j are integers, k − j is an integer, thus −7 is an even integer, a
contradiction. Thus the assumption is false, and the original statement is true. �

2. Using proof by contradiction, prove that ∀n ∈ Z, 4 - (n2 + 2)
Suppose that ∃n ∈ Z, 4|(n2 + 2). By definition of divisibility, ∃k ∈ Z, such that 4k = n2 + 2. Rewrite
as n2 = 4k − 2 = 2(k − 1), which indicates that n2 is even and thus n is even. By definition of
even numbers, ∃q ∈ Z, such that n2 = (2q)2 = 4q2. n2 = 4q2 indicates that n2 is divisible by 4.
Previously, we assumed n2 + 2 is also divisible by 4. n2 and n2 + 2 can not both be divisible by 4,
hence contradiction. �

3. Using induction, prove that for all integers n ≥ 1, 22n − 1 is divisible by 3, i.e. 3|22n − 1

Base case: n = 1: 22×1 − 1 = 3 and 3|3.
Inductive hypothesis: assume 3|22k − 1 =⇒ 22k − 1 = 3q, q ∈ Z
Prove for k + 1:

22(k+1) − 1 = 22k+2 − 1

= 22k × 4− 1

= 22k × 3 + 22k − 1

= 22k × 3 + 3q

= (22k + q)× 3

q ∈ Z and 22k ∈ Z, thus 3|22(k+1) − 1. �

4. Given sets A, B, and C in the same universe, determine if each of the following statements is true or
false. If it is true, then prove it. If it is false, then give a counter example.

(a) C ⊆ A ∧ C ⊆ B → C ⊆ A ∪B
Proof: Let x ∈ C. Since C ⊆ A and C ⊆ B, x ∈ A and x ∈ B. Thus by definition, x ∈ A ∩B. �

(b) C ⊆ A ∪B → C ⊆ A ∧ C ⊆ B
This is false. A counter example is given for example by A = {1, 2}, B = {3, 4} and C = {2, 3}.

(c) Ac ∩ (A ∪B) = B\A.

Algbraic proof: Ac ∩ (A ∪B) = (Ac ∩A) ∪ (Ac ∩B) = ∅ ∪ (Ac ∩B) = Ac ∩B = B \A. �

Alternatively: show that Ac ∩ (A ∪B) ⊆ A \B and A \B ⊆ Ac ∩ (A ∪B)

Ac ∩ (A ∪B) ⊆ A \B: Let x be an arbitrary element in Ac ∩ (A ∪B), by definition, x ∈ Ac and
x ∈ (A ∪ B), which is equivalent to x /∈ A and (x ∈ A or x ∈ B), and it follows that x /∈ A and
x ∈ B, which is by definition x ∈ B \A



A \ B ⊆ Ac ∩ (A ∪ B): Let x be an arbitrary element in A \ B. by definition, x ∈ B and x /∈ A.
x ∈ B → x ∈ (A ∪ B) and x /∈ A → x ∈ Ac. Thus x ∈ (A ∪ B) and x ∈ Ac, by definition,
x ∈ Ac ∩ (A ∪B). �

5. Prove that give a set S, the cardinality of its power set is 2|S|.
Do an induction on |S|.
Base case: |S| = 0, which means S is the empty set. The power set of the empty set contains one
element, the empty set itself. Thus |P (∅)| = 1 = 20 = 2|∅|.
Inductive hypothesis: |S| = k, and |P (S)| = 2k

Prove for |S| = k + 1:
For the first k elements in S, we construct their power set, say P (Sk), which by the inductive hypothesis,
has 2k elements. All these elements must be in the power set of P (S). The rest of the power set consist
of all possible subsets that contain the (k + 1)-th elemement, and we form these subsets by adding
the (k + 1)-th element to every set found in P (Sk). And there are 2k of these subsets. Therefore
|P (S)| = 2k + 2k = 2k+1. �

6. Prove that if a1, a2, ..., an are n distinct real numbers, exactly n − 1 multiplications are needed to
compute the product of these n numbers, no matter how parentheses are inserted into their product.
Proof by strong induction:
Base case: n = 1: The product a1 requires 1− 1 = 0 multiplication.
Inductive hypothesis: assume that a1 × a2 × . . .× ak require k − 1 multiplications, ∀k, 1 ≤ k ≤ n.
Inductive step: Consider the last multiplication (any last multiplication no matter how the parentheses
are inserted) used to compute the product of a1×a2× . . .×an+1. It must be the product of k of these
numbers and n + 1 − k of these numbers, for some k, 1 ≤ k ≤ n. By the inductive hypothesis, those
two products requires k − 1 and n− k multiplications, respectively. Counting the last multiplication,
the total multiplications needed for a1× a2× . . .× an+1 is thus (k− 1) + (n− k) + 1 = n = (n+ 1)− 1.
�

7. For each of the following, give a recursive definition. Remember to indicate the initial terms or base:

(a) an =

n∑
i=0

i

a0 = 0, ak = ak−1 + k

(b) The sequence that generates the terms 3, 6, 12, 24, 48, 96, 192, ...
a0 = 3, ak = 2ak−1

(c) The set of non-negative even numbers
0 ∈ S, x ∈ S → x+ 2 ∈ S, nothing else is in S.

(d) The set of all even numbers
0 ∈ S, x ∈ S → x+ 2 ∈ S ∧ x ∈ S → x− 2 ∈ S, nothing else is in S.

8. Find explicit formulae for the following recursively defined sequences, and prove correctness using
induction.

(a) ak = k − ak−1, ∀k ≥ 1, a0 = 0.

a0 = 0

a1 = 1− a0 = 1− 0 = 1

a2 = 2− a1 = 2− 1 = 1

a3 = 3− a2 = 3− 1 = 2

a4 = 4− a3 = 4− 2 = 2

a5 = 5− a4 = 5− 2 = 3

a6 = 6− a5 = 6− 3 = 3

Guess: ak = dk2 e



Proof by strong induction:
Base case: a0 = 0 = d 02e
Inductive hypothesis: ai = d i2e, ∀i, 0 ≤ i ≤ k
Inductive step:

ak+1 = k + 1− ak by definition

= k + 1− dk
2
e by inductive hypothesis

=

{
k + 1− k+1

2 if k + 1 is even (k is odd)
k + 1− k

2 if k + 1 is odd (k is even)
by definition of ceiling

=

{
2(k+1)−(k+1)

2 if k + 1 is even
2(k+1)−k

2 if k + 1 is odd

=

{
k+1
2 if k + 1 is even

k+2
2 if k + 1 is odd

= dk + 1

2
e by definition of ceiling

�

(b) ak = 2ak−2, ∀k ≥ 2, a0 = 1, a1 = 2.

a0 = 1 = 20

a1 = 2 = 21

a2 = 2a0 = 2× 21 = 21

a3 = 2a1 = 2× 21 = 22

a4 = 2a2 = 2× 21 = 22

a5 = 2a3 = 2× 22 = 23

a6 = 2a4 = 2× 22 = 23

Guess: ak = 2d
k
2 e

Proof by strong induction:
Base case: a0 = 1 = 20 = 2d

0
2 e and a1 = 2 = 21 = 2d

1
2 e

Inductive hypothesis: ai = 2d
i
2 e, ∀i, 0 ≤ i ≤ k

Inductive step:

ak+1 = 2ak−1 by definition

= 2× 2d
k−1
2 e by inductive hypothesis

=

{
2× 2

k−1
2 if k − 1 is even

2× 2
k−1+1

2 if k − 1 is odd
by definition of ceiling

=

{
2

k−1
2 +1 if k − 1 is even

2
k
2+1 if k − 1 is odd

=

{
2

k+1
2 if k − 1 is even

2
k+2
2 if k − 1 is odd

=

{
2

k+1
2 if k + 1 is even

2
k+2
2 if k + 1 is odd

k + 1 and k − 1 have the same parity

= 2d
k+1
2 e by definition of ceiling

�



9. Prove the correctness of the following algorithm:

[Pre-condition: i=1 and sum=0]

while(i<=100)

sum := sum + i

i := i + 1

end while

[Post-condition: sum = 1 + 2 + ... + 100]

State your loop invariant clearly.

Loop invariant: I(n) : i = n+ 1 and sum = 1 + ...+ n

(a) Base case:

I(0) : n = 0⇒
{
i = 0 + 1 = 1 by the loop invariant
sum = 0 no addition performed, 0 < 1

which matches the pre-condition

(b) Inductive: Assume that before an arbitrary iteration k + 1, I(k) is true, i.e. i = k + 1 and
sum = 1 + ...+ k

loop iteration execution:

sum := sum + i ⇒ sum = 1 + ...+ k + (k + 1)

i := i + 1 ⇒ i = k + 2

Thus I(k + 1) is true after one loop iteration

(c) Eventual falsity of guard: i starts at 1 and is incremented at each iteration until ≤ 100 is violated,
which is at I(100).

(d) Correctness of post-condition: I(100) : i = 101 and sum = 1 + ... + 100, which matches the
post-condition. �

10. Given the following recursive definition of a set S:

• Basis: λ ∈ S
• Recursive: x ∈ S → axa ∈ S

Prove using structural induction, that ∀s ∈ S, |s| is even.

Base case: |λ| = 0, 0 is even.
Inductive hypothesis: assume all strings of length n in S have even length, thus n is even.
Recursive step:
We construct s = axa, by the recursive definition, where |x| = n. Thus |s| = 1 + |x| + 1 = n + 2. By
the inductive hypothesis, n is even, n+ 2 is also even, thus |s| is even. �


