

Height

- If *T* is any binary tree of height *h* with *t* leaves (*h*>0), then $t \le 2^h$
- Or $\log_2 t \le h$
- Proof by strong induction on *h*
 - P(0): T has only a root → 1 leaf: $1 \le 2^{\circ}$
 - Assume P(i), $0 \le i \le k$: All binary trees with height less than or equal to k has at most 2^k leaves

7

-P(k+1): T is a binary tree of height k+1

Induction Cont.

- $-k \ge 0 \rightarrow k+1 \ge 1$, root has at least one child
- Root has exactly one child c:
 - The subtree rooted at c, T_c is of height k
 - By the inductive hypothesis, $T_{\rm c}$ has at most 2^k leaves
- Root has two children c_1 and c_2 :
 - One of the subtrees (say T_{c1}) is of height k and T_{c2} is of any height between 0 and k
 - By the inductive hypothesis, both have at most 2^k leaves, which gives a total of at most 2^{k+1}.

8