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The Erdös Number 

•  Collaboration Graph 
•  Paul Erdös (1913-1996) 

– A prolific Hungarian mathematician 
•  E(Einstein) = 2, E(Turing) = 5, E(Nash) = 4 
•  Bacon number 
•  Erdös-Bacon number 

Adjacency Matrix 

•  Given G = (V, E) where |V| = n, the 
adjacency matrix AG (A) of G is the nxn 
matrix where Aij is the number of edges 
from vi to vj. 

0 

1 

2 
3 

0 2 0 2
1 0 1 0
0 0 2 0
0 1 2 0

!

"

#
#
#
#

$

%

&
&
&
&

Variations 

•  If G is undirected, then Aij is the number of 
edges between vi and vj. 

•  The resulting A is symmetric. 
•  If G is a simple graph, then Aij is binary. 
•  A is dependent on the ordering of V. 
•  How many different adjacency matrices 

represent the same graph?  

Connected Components 

•  Let G be a graph with connected 
components G1, …, Gk. Let ni be the 
number of vertices in Gi. The adjacency 
matrix of G has the form: 

A1 0 ... 0
0 A2 ... 0
   
0 0 ... Ak
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Matrix Multiplication 

•  Given matrices A and B, the product M = 
AB is defined as follows: 

•  Matrix multiplication does NOT commute. 

Mij = ai1 ai2 ... ain!
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= ai1b1 j + ai2b2 j +...+ ainbnj
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Matrix Power 

•  Given a square matrix A, the powers of A 
are defined as follows: 
– A0 = I 
– An = AAn-1 
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A2 =
0 0 0
0 1 1
1 1 2
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A3 =
0 0 0
0 1 2
1 2 3
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Theorem 

•  Given G = (V, E) with adjacency matrix A, 
the number of walks of length k from vi to 
vj is given by (Ak)ij. 

•  Proof by induction: 
– P(1): Aij = # of edges from vi to vj = # of walks 

of length 1 from vi to vj 

– Assume P(k): (Ak)ij = # of walks of length k 
from vi to vj 

–   Prove P(k+1) 

Proof 

•  P(k+1): 
–  Ak+1 = AAk 

–  (Ak+1)ij = ai1(Ak)1j+ai2(Ak)2j+ … + ain(Ak)nj 

–  Consider ai1(Ak)1j:  
•  By the inductive hypothesis, it is the # of walks of length k 

from v1 to vj multiplied by the # of walks of length 1 from vi to 
v1.  

•  Which is the # of walks of length k+1 from vi to vj passing 
through v1. 

–  Argument holds for all terms 
–  Thus the total is the number of all possible walks from 

vi to vj. 

Triangulation 

•  A triangulation of a polygon is a 
decomposition into triangles with maximal 
non-crossing diagonals. 
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Figure 1.2. (a) A polygon with (b) a diagonal; (c) a line segment; (d) crossing
diagonals.

Exercise 1.2. Flesh out the proof of Theorem 1.1 by supplying arguments
to (a) justify the claim that if there is a path between the even- and
odd-crossings sets, the path must cross ∂P; and (b) establish that for
two points in the same set, there is a path connecting them that does
not cross ∂P.

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching ∂P except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.2 shows (a) a polygon, (b) a diagonal, (c) a line segment
that is not a diagonal, and (d) two crossing diagonals.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here maximal means that no further diagonal may be added to the
set without crossing (sharing an interior point with) one already in
the set. Figure 1.3 shows a polygon with three different triangulations.
Triangulations lead to several natural questions. How many different
triangulations does a given polygon have? How many triangles are
in each triangulation of a given polygon? Is it even true that every
polygon always has a triangulation? Must every polygon have at least
one diagonal? We start with the last question.

Figure 1.3. A polygon and three possible triangulations.

Graph Coloring 

•  A coloring of a graph is an assignment of 
colors to nodes so that no adjacent nodes 
have the same color 
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Figure 1.15. Triangulations and colorings of vertices of a polygon with n = 18
vertices. In both figures, red is the least frequently used color, occurring five times.

Since there are n vertices, by the pigeonhole principle, the least
frequently used color appears on at most !n/3" vertices. Place guards
at these vertices. Figure 1.15 shows two examples of triangulations of
a polygon along with colorings of the vertices as described. Because
every triangle has one corner a vertex of this color, and this guard
covers the triangle, the museum is completely covered.

Exercise 1.33. For each polygon in Figure 1.16, find a minimal set of
guards that cover it.

Exercise 1.34. Construct a polygon with n = 3k vertices such that plac-
ing a guard at every third vertex fails to protect the gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For
instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Figure 1.16. Find a set of minimal guards that cover the polygons.

Bipartite Graphs 

•  A simple graph is bipartite if V can be 
partitioned into V = V1  ∪ V2  so that any 
two adjacent vertices are in different 
partitions.   

•  A bipartite graph is bichromatic (can be 
two-colored) 
– vertices can be colored using two colors so 

that no two vertices of the same color are 
adjacent. 
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Triangulation of a Polygon 

•  A triangulation of a polygon is a 
decomposition into triangles with maximal 
non-crossing diagonals. 

•  A polygon is a simple circuit. 
•  A triangulation is a maximal planar 

supergraph of a polygon. 

Every Triangulation of a Polygon 
Can be 3-colored 1.3 THE ART GALLERY THEOREM 17
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Meister’s Two Ears 

•  Three consecutive vertices a, b and c on 
the boundary of a polygon form an ear if 
ac is a diagonal. b is known as an ear tip. 

•  Every polygon with n>3 vertices has at 
least two ears. 


