

The game of poker

- · You are given 5 cards (this is 5-card stud poker)
- The goal is to obtain the best hand you can
- The possible poker hands are (in increasing order):
 No pair
- One pair (two cards of the same face)
- Two pair (two sets of two cards of the same face)
- Three of a kind (three cards of the same face)
- Straight (all five cards sequentially ace is either high or low)
- Flush (all five cards of the same suit)
- Full house (a three of a kind of one face and a pair of another face)
- Four of a kind (four cards of the same face)
- Straight flush (both a straight and a flush)
- Royal flush (a straight flush that is 10, J, K, Q, A)

Poker hand odds			
 The possible poker order): 	hands ar	e (in increasing	
– Nothing	1,302,540	0.5012	
– One pair	1,098,240	0.4226	
– Two pair	123,552	0.0475	
- Three of a kind	54,912	0.0211	
 Straight 	10,200	0.00392	
– Flush	5,108	0.00197	
– Full house	3,744	0.00144	
– Four of a kind	624	0.000240	
 Straight flush 	36	0.0000139	
– Royal flush	4	0.00000154 ₉	

Let E₁ and E₂ be events in sample space S

• Then
$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$$

11

- 100, what is the probability that it is divisible by 2 or 5 or both?
- Let *n* be the number chosen
 - -p(2|n) = 50/100 (all the even numbers) -p(5|n) = 20/100

$$-p(2|n)$$
 and $p(5|n) = p(10|n) = 10/100$

$$-p(2|n)$$
 or $p(5|n) = p(2|n) + p(5|n) - p(10|n)$

12

When is gambling worth it?

- This is a *statistical* analysis, not a moral/ethical discussion
- What if you gamble \$1, and have a ½ probability to win \$10?
- What if you gamble \$1 and have a 1/100 probability to win \$10?
- One way to determine if gambling is worth it:

 probability of winning * payout ≥ amount spent per play

13

Expected values of gambling

- Gamble \$1, and have a $\frac{1}{2}$ probability to win \$10
 - (10-1)*0.5+(-1)*0.5 = 4
- Gamble \$1 and have a 1/100 probability to win \$10?
 - (10-1)*0.01+(-1)*0.99 = -0.9
- Another way to determine if gambling is worth it: Expected value > 0

Powerball lottery

- Modern powerball lottery: you pick 5 numbers from 1-55
 - Total possibilities: C(55,5) = 3,478,761
- You then pick one number from 1-42 (the powerball)
- Total possibilities: C(42,1) = 42
- You need to do both -- apply the product rule,
 Total possibilities are 3,478,761* 42 = 146,107,962
- While there are many "sub" prizes, the probability for the jackpot is about 1 in 146 million
- If you count in the other prizes, then you will "break even" if the jackpot is \$121M $$_{\rm 17}$$

Blackjack probabilities

- Another way to get 20.72
- There are C(52,2) = 1,326 possible initial blackjack hands
- · Possible blackjack blackjack hands:
 - Pick your Ace: C(4,1)
 - Pick your 10 card: C(16,1)
 - Total possibilities is the product of the two (64)
- Probability is 64/1,326 = 1 in 20.72 (0.048)

Counting cards and Continuous Shuffling Machines (CSMs)

- Counting cards means keeping track of which cards have been dealt, and how that modifies the chances
- After cards are discarded, they are added to the continuous shuffling machine

 Many blackjack players refuse to play at a casino with one
 So they apply upd as much as applying would

```
    So they aren't used as much as casinos would like
```

23

28

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Buying (blackjack) insurance

- If the dealer shows an Ace, there is a 16/52 = 0.308 probability that they have a blackjack
 Assuming an infinite deck of cards
 - Assuming an infinite deck of cards
 Any one of the "10" cards will cause a blackjack
 If you bought insurance 1,000 times, it would be used
- If you bought insurance 1,000 times, it would be used 308 (on average) of those times
 Let's say you paid \$1 each time for the insurance
- The payout on each is 2-to-1, thus you get \$2 back when you use your insurance
- Thus, you get 2*308 = \$616 back for your \$1,000 spent
 Or, using the formula p(winning) * payout ≥ investment
 - 0.308 * \$2 ≥ \$1?
 0.616 ≥ \$1?
 - 0.016 ≥ \$1?
 Thus, it's not worth it

Why counting cards doesn't work well...

- If you make two or three mistakes an hour, you lose any advantage
 And, in fact, cause a disadvantage!
- You lose lots of money learning to count cards
- Then, once you can do so, you are banned from the casinos

27

So why is Blackjack so popular? Although the casino has the upper hand, the odds are much closer to 50-50 than with other games Notable exceptions are games that you are not playing against the house – i.e., poker You pay a fixed amount per hand

The Roulette table			
 Bets can be placed on: 	Probability:	Payout:	
 A single number 	1/38	36 <i>x</i>	
 Two numbers 	2/38	18 <i>x</i>	
 Four numbers 	4/38	9 <i>x</i>	
 All even numbers 	18/38	2 <i>x</i>	
 All odd numbers 	18/38	2 <i>x</i>	
– The first 18 nums	18/38	2 <i>x</i>	
 Red numbers 	18/38	2 <i>x</i>	
		32	

Roulette

- · Martingale betting strategy
 - Where you double your (outside) bet each time (thus making up for all previous losses)
 - It still won't work!
 - You can't double your money forever
 - It could easily take 50 times to achieve a final win
 - If you start with \$1, then you must put in $1^{250} = 1,125,899,906,842,624$ to win this way!
 - That's 1 quadrillion

34