

vvays to Count		
• Choosing <i>k</i> elements from <i>n</i>		
	order matters	order doesn't matter
Repetition allowed	n ^k	C(<i>k</i> + <i>n</i> -1, <i>k</i>)
No repetition	P(<i>n</i> , <i>k</i>)	C(n, k)
		2

1.0

**\ ** *\ *

Combinatorial Proof

- A combinatorial proof is a proof that uses counting arguments to prove a theorem -Rather than some other method such as algebraic techniques
- · Essentially, show that both sides of the proof manage to count the same objects
- · In other words, a bijection between the two sets

3

Pascal's Formula

- · One of the most famous and useful in Combinatorics
- C(n+1, r) = C(n, r-1) + C(n, r)
- · Recall another important combinatorial result:

4

• C(n, r) = C(n, n-r)

Combinatorial Proof • C(n+1, r): # of ways to choose r elements from n +1 • Remove an arbitrary element from *n*+1, call it *a*. • Now form all possible subsets of size r. Theses

- are all the subsets of size r you can have without a. C(n, r)
- Now we need to account for subsets of size r with a
- From the same *n* elements, form all possible subsets of size *r*-1, then add *a*. C(*n*, *r*-1) 5

• For (*x*+*y*)⁵

11

$$(x+y)^{5} = \binom{5}{5}x^{5} + \binom{5}{4}x^{4}y + \binom{5}{3}x^{3}y^{2} + \binom{5}{2}x^{2}y^{3} + \binom{5}{1}xy^{4} + \binom{5}{0}x^{5}y^{4} + \binom{5}{0}x^{5}y^{5} + \binom{5}{1}xy^{5}y^{5} + \binom{5}{1}x^{5}y^{5} + \binom{5}{1}x^{5} + \binom{5}{1}$$

 y^5

