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Ways to Count

* Choosing k elements from n

order matters  order doesn’t matter

No repetition P(n, k) C(n, k)

Combinatorial Proof

» A combinatorial proof is a proof that uses
counting arguments to prove a theorem

— Rather than some other method such as
algebraic techniques

Essentially, show that both sides of the
proof manage to count the same objects

* In other words, a bijection between the two
sets

Pascal’s Formula

¢ One of the most famous and useful in
Combinatorics

C(n+1,r)=C(n,r-1)+ C(n, r)

* Recall another important combinatorial
result:

* C(n, r)=C(n, n-r)

Combinatorial Proof

* C(n+1, r): # of ways to choose r elements from n
+1

* Remove an arbitrary element from n+1, call it a.

* Now form all possible subsets of size r. Theses
are all the subsets of size r you can have without
a.C(n,r)

* Now we need to account for subsets of size r
with a

* From the same n elements, form all possible

subsets of size r-1, then add a. C(n, r-1)
5

Algebraic Proof
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Binomial Coefficients

* A quick expansion of (x+y)"

* Why it’s really important:

It provides a good context to present
proofs

— Especially combinatorial proofs

Polynomial Expansion

+ Consider (x+y)3  (x+y)’ =x’+3x7y+3xy" +y’
* Rephrase it as:

(x+y)(x+y)(x+y)=x3+[x2y+x2y+x2y]+[xy2 +xy° +xy2]+y3

* When choosing x twice and y once, there are
C(3,2) = C(3,1) = 3 ways to choose where the x
comes from

* When choosing x once and y twice, there are
C(3,2) = C(3,1) = 3 ways to choose where the y
comes from

Polynomial expansion

« Consider (x+y)’=x+5x'y+10x°y* +10x°y’ +5xy* +y°

» To obtain the x° term
— Each time you multiple by (x+y), you select the x
— Thus, of the 5 choices, you choose x 5 times or y 0 times
* C(55)=1=C(5,0)
» To obtain the x*y term
— Four of the times you multiply by (x+y), you select the x
* The other time you select the y
— Thus, of the 5 choices, you choose x 4 times or y 1 time
« C(54)=5=C(51)
» To obtain the x3y? term
- C(5,3)=C(5,2)= 10

Polynomial expansion
* For (x+y)®

(x+y) =x" +5x*y +10x°y* +10x%y° + 5xp* + )°
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Polynomial Expansion:
The Binomial Theorem

* For (x+y)"
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Sample question

« Find the coefficient of x%)8 in (x+y)'3

13\ (13
» Answer: (5)=(8]=1287
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Examples

« What is the coefficient of x'2y'3 in (x+y)?5?

1
25| _[ 25 | __2 500,300
12 13 ) 13120

» What is the coefficient of x'2y'3 in (2x-3y)25?
. 325 y
(2x+(=30)° = 2( 4]<2x)” '(-3yy
“\ J
— The coefficient occurs when j=13:

25 R |
21%(=3)" = 23! 2'2(=3)" = -33,959,763,545,702,400
13 1312!
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Corollary 1 and Algebraic Proof
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+ Algebraic proof
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Combinatorial Proof 2( " ]20

* A set with n elements has 2" subsets
— By definition of and cardinality of power set
» Each subset has either Q0 or 1 or2 or ... or
n elements
— There are(: ) subsets with 0 elements,
— (}) subsets with 1 element, ...
—and (,) subsets with n elements "
— Thus, the total number of subsets is Z(k)
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Corollary 2 Corollary 3
2“”( L ]=0’"=1 « Let n be a non-negative integer. Then
« Algebraic proof 0=0" gzk(”]ﬂ
S(n “\J H
= —DF ' + Algebraic proof
;(k]( e 9 P 3 =(1+2)

n

Sl -3[e)

* This implies that

- m S

More Combinatorial Proofs Vandermonde’s identity
* n3-n=6C(n,2) + 6C(n,3) * Let m, n, and r be non-negative integers
« n%-n = (n+1)n(n-1) with r not exceeding either m or n. Then
. = n(n-1)(n-2) + 3n(n-1) (m+n)=’;( m )("]
. n3_n=P(n+1’3) r ~\r-k )\ k

* Assume a congressional committee must
consist of r people, and there are n
Democrats and m Republicans

—How many ways are there to pick the
committee?

21 22

» Next, we find that value via a different means

Vandermonde's derity |+ 12174

p
» Consider two sets, one with m items and one with n items

— Then there are ["'T"] ways to choose r items from the union of those
two sets '

— Pick k elements from the set with n elements
— Pick the remaining r-k elements from the set with m elements

— Via the product rule, there are ('/”A]w ways to do that for EACH value
of k :

— Lastly, consider this for all values of k: m n
“\r—-k \k

e ()
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