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The multiplication rule 
•  Also called the product rule 
•  If there are n1 ways to do task 1, and n2 ways to 

do task 2 
–  Then there are n1xn2 ways to do both tasks in 

sequence 
–  We must make one choice AND a second choice 
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Product rule example 

•  Sample question 
– There are 18 MATH majors and 17 CS majors 
– How many ways are there to pick one math 

major and one CS major? 

•  Total is 17 x 18 = 306 
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Product rule example 
•  How many strings of 4 decimal digits… 
•  Do not contain the same digit twice? 

–  We want to chose a digit, then another that is not the same, then 
another… 

•  First digit: 10 possibilities 
•  Second digit: 9 possibilities (all but first digit) 
•  Third digit: 8 possibilities 
•  Fourth digit: 7 possibilities 

–  Total = 10x9x8x7 = 5040 
•  End with an even digit? 

–  First three digits have 10 possibilities 
–  Last digit has 5 possibilities 
–  Total = 10x10x10x5 = 5000 

When the product rule is difficult 
to apply 

•  President, treasurer and secretary are to 
be chosen among A, B, C, D. A can not be 
president and either C or D must be 
secretary. 

•  Naïve application of the product rule: 
– President: 3 
– Treasurer: 3 
– Secretary: 2 
– Total = 18 
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Tree diagrams 

•  We can use tree diagrams to enumerate 
the possible choices 

•  Once the tree is laid out, the result is the 
number of (valid) leaves 
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Only 8 choices 
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B C D 

A C D A B A B 

C D D C D D C C 
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Tree diagrams example 
•  Use a tree diagram to find the number of bit strings of 

length four with no three consecutive 0s 
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How many ways can the Eagles get 
to 5-6 in the next 3 games? 
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Permutations 

•  Given a set of n elements, its permutations 
can be counted this way: 
– Choose one element for first position: n 
– Choose next element for second position: n-1 
– … 
– Total: nx(n-1)x…x1 = n! 
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r-permutation 

•  An r-permutation of a set of n elements is 
an ordered selection of r elements from 
the n elements. 
– A♦, 5♥, 7♣, 10♠, K♠ is a 5-permutation of the 

set of cards 
•  The notation for the number of r-

permutations: P(n,r) 
– The poker hand is one o f P(52,5) 

permutations 
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r-permutations 

•  Number of poker hands (5 cards): 
–  P(52,5) = 52x51x50x49x48 = 311,875,200 

•  Number of (initial) blackjack hands (2 cards): 
–  P(52,2) = 52x51 = 2,652 
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r-permutation Formula 

•  There are n ways to choose the first 
element 
– n-1 ways to choose the second 
– n-2 ways to choose the third 
– … 
– n-r+1 ways to choose the rth element 

•  By the product rule, that gives us: 
 P(n,r) = n(n-1)(n-2)…(n-r+1) 
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r-permutations example 

•  How many ways are there for 3 students in 
this class to sit together? 

•  There are 50 students in the class 
– P(50,3) = 50x49x48 = 117,600 
– Note that the positions they take do matter 
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Permutations vs. r-permutations 

•  r-permutations: Choosing an ordered 5 
card hand is P(52,5) 
– When people say “permutations”, they almost 

always mean r-permutations 
•  But the name can refer to both 

•  Permutations: Choosing an order for all 52 
cards is P(52,52) = 52! 
– Thus, P(n,n) = n! 
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Sample question 
•  How many permutations of {a, b, c, d, e, f, g} 

end with a? 
–  Note that the set has 7 elements 
–  The last character must be a 
–  The rest can be in any order 

•  Thus, we want a 6-permutation on the set {b, c, 
d, e, f, g}  

•  P(6,6) = 6! = 720 

•  Why is it not P(7,6)? 


