Set Properties

CS 231
Dianna Xu

3/24/16

Set Identities

» Basic laws on how set operations work
 Just like logical equivalence laws!

— Replace U with v

— Replace N with A

— Replace complement with ~

— Replace & with ¢

— Replace U with t
* One additional on set differences

Set identities: De Morgan again

* These should look e
very familiar...
=
AUB=4NB l‘

Subset Relations

+rANBES A ANBE<SB
+ASAUB, BE€AUB
+ASB ABESC—-AcC

Communicative AUB=BUA ANB=BNA
- (AUB)UC= (ANB)NC=
Associative AU (B U C) AN (BN C)
N AUBNC)= AN(BUC)=
Distributive (AUB)N(AUC) | (ANB)U(ANC)
Identity AUZ=A ANU=A
Complement AUA°=U ANAc=Q
Double Complement (A% =A
Idempotent AUA=A ANA=A
Universal Bound AUU=U ANS=0
De Morgan’s (AUB)=A°NnBe (ANB)=A°UBe
Absorption AU((ANB)=A AN(AUB)=A
Complement of U U= ge=U
and &
Set Difference A-B=ANBe
Proofs

* To prove that A is a subset of B (A & B):

— Assume that xEA is a particular but arbitrarily
chosen element of A

— Show that

XEB

* To prove that two sets A and B are equal

(A =B):

—prove A € B, and
—prove B € A




How to Prove a Set Identity

* For example: ANB = B—(B-A)
* Methods:

—The element method: Prove each set is a
subset of each other, by showing any element
that belongs to one also belongs to the other

— Algebraic Proof: Use the set identity laws

3/24/16

What we are going to prove...

ANB = B—(B-A)

BA(ERA) B-A

Proof by Set Identity Laws
* Prove that ANB=B—(B-A)

B-(B-A)=B-(BNA) Definition of difference

=BN(BNA) Definition of difference
-BNBUA4) De Morgan’s law
=BNBUA4) Double Complement
=(BNB)U(BN4) Distributive law
=dUBNA) Complement law
=(BN4) Identity law

=ANB

Commutative law &

Proof by Element Method

Assume that an element is a member of
one of the identities implies that it is a
member of the other

Repeat for the other direction

We are trying to show:

— (x € ANB — x € B—(B-A))A(x € B-(B-A) — x
€ ANB)

— This is the bi-conditional: x € ANB <~ x € B—
(B-A)

Not good for long proofs

Proof by Element Method

» Assume that x € B—(B-A)
— By definition of set difference, x € B A x & B-A
« Consider x & B-A
- XEB-A=xEBAXEZA
- XE&B-A=~XEBAXZA)=XZBVXEA
* Sowehave xEB A (XZB v xEA)
-XEBAXEB=c¢
-XEBAXxEA=xEANB
—Thus, x € B-(B-A) -» x & ANB
« B—-(B-A) € ANB

Proof by Element Method

Assume that x € ANB

— By definition of intersection, x EA A xEB
Thus, we know that x & B-A

— B—A includes all the elements in B but not in A
Consider B—(B-A)

—We know x EB A x &€ B-A

— By definition of difference, x € B—(B-A)

x € ANB — x € B—(B-A)
ANB € B—(B-A)m




Russell’s Paradox

» Consider the set:
—-S={A|AisasetAAZA}
* Is S an element of itself?

» Consider:
-S€ES
* Then S can not be in itself, by definition
-S¢S
* Then S is in itself by definition
— Contradiction!

3/24/16

How Do We Fix It?

» Consider the set:
-S={A|ACUAAEA)}

 Similarly:
-SES—-SCUAS¢ES

» But:
-S¢S—>~SCSUAS¢&S)=SgUVSES

* In other words, S is not a proper set

The Halting Problem

» Given a program P, and input I, will the
program P ever terminate?

— Meaning will P(l) loop forever or halt?

» Can a computer program determine this?
—Can a human?

* First shown by Alan Turing in 1936

Some Notes

» To “solve” the halting problem means we
create a function CheckHalt(P,I)

— P is the program we are checking for halting
— |l is the input to that program
 And it will return “loops forever” or “halts”

* Note it must work for any program, not just
some programs, and any input

Perfect Numbers

* Numbers whose divisors (not including the number) add
up to the number
- 6=1+2+3
- 28=1+2+4+7+14
* The list of the first 10 perfect numbers:
6, 28, 496, 8128, 33550336, 8589869056,
137438691328, 2305843008139952128,
2658455991569831744654692615953842176,
191561942608236107294793378084303638130997321
548169216

— The last one was 54 digits!

« All known perfect numbers are even; it's an open (i.e.
unsolved) problem if odd perfect numbers exist

Where Does That Leave Us?

+ If a human can’t figure out how to do the
halting problem, we can’t make a
computer do it for us

e It turns out that it is impossible to write
such a CheckHalt() function
— But how to prove this?




3/24/16

CheckHalt()'s Non-existence

» Consider P(l): a program P with input |
» Suppose that CheckHalt(P,I) exists

— prints either “loop forever” or “halt”
» A program is a series of bits

— And thus can be considered data as well
» Thus, we can call CheckHalt(P,P)

— It's using the bits of program P as the input to
program P

CheckHalt()’s non-existence

Consider a new function:

Test(P):
loops forever if CheckHalt(P,P) prints “halts”
halts if CheckHalt(P,P) prints “loops forever”

Now run Test(Test)
— If Test(Test) halts...
« Then CheckHalt(Test, Test) returns “loops forever”...
* Which means that Test(Test) loops forever
« Contradiction!
— If Test(Test) loops forever...
« Then CheckHalt(Test, Test) returns “halts”...
« Which means that Test(Test) halts
« Contradiction!

The Halting Problem

* It was the first algorithm that was shown to
not be able to exist
—You can prove an existential by showing an
example (a correct program)

—But it's much harder to prove that a program
can never exist




