

Set Identities

- Basic laws on how set operations work
- Just like logical equivalence laws!
 - Replace U with v
 - Replace \cap with ${}_{\wedge}$
 - Replace complement with ~
 - Replace \varnothing with \boldsymbol{c}
 - Replace U with \mathbf{t}
- · One additional on set differences

Set identities: De Morgan again • These should look very familiar... $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Communicative	A U B = B U A	A N B = B N A
Associative	(A U B) U C = A U (B U C)	(A ∩ B) ∩ C = A ∩ (B ∩ C)
Distributive	A U (B ∩ C) = (A U B) ∩ (A U C)	A ∩ (B U C) = (A ∩ B) U (A ∩ C)
Identity	A U Ø = A	$A \cap U = A$
Complement	$A \cup A^{c} = U$	A∩A°=∅
Double Complement	(A ^c) ^c = A	
Idempotent	A U A = A	A N A = A
Universal Bound	$A \cup U = U$	A∩Ø=Ø
De Morgan's	(A U B)° = A° ∩ B°	(A ∩ B) ^c = A ^c U B ^c
Absorption	A U (A ∩ B) = A	A ∩ (A U B) = A
Complement of U and \emptyset	$U^{c} = \emptyset$	
Set Difference	$A - B = A \cap B^{c}$	

Subset Relations

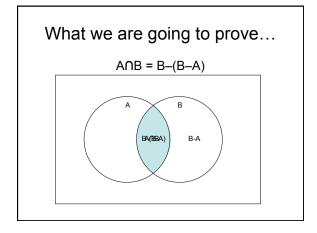
- $\bullet \ \mathsf{A} \cap \mathsf{B} \subseteq \mathsf{A}, \mathsf{A} \cap \mathsf{B} \subseteq \mathsf{B}$
- A \subseteq A U B, B \subseteq A U B
- $\bullet \ \mathsf{A} \subseteq \mathsf{B} \ \land \ \mathsf{B} \subseteq \mathsf{C} \to \mathsf{A} \subseteq \mathsf{C}$

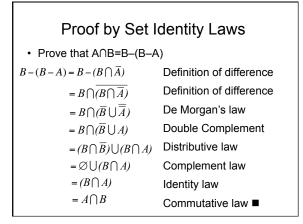
Proofs

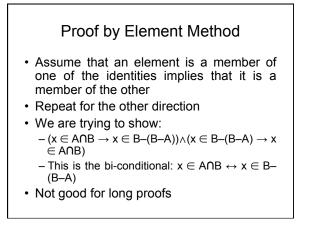
- To prove that A is a subset of B (A ⊆ B):
 Assume that x∈A is a particular but arbitrarily
 - chosen element of A
- Show that $x \in B$
- To prove that two sets A and B are equal (A = B):
 - prove A \subseteq B, and
 - prove B ⊆ A

How to Prove a Set Identity

- For example: A∩B = B–(B–A)
- · Methods:
 - The element method: Prove each set is a subset of each other, by showing any element that belongs to one also belongs to the other
 - Algebraic Proof: Use the set identity laws







Proof by Element Method

```
• Assume that x \in B-(B-A)
```

- By definition of set difference, $x \in B \land x \notin B–A$ \bullet Consider $x \notin B–A$
 - $x \in B A = x \in B \land x \notin A$
 - $-x \notin B A = \langle x \in B \land x \notin A \rangle = x \notin B \lor x \in A$
- So we have $x \in B \land (x \notin B \lor x \in A)$
- $x \in B \land x \notin B = c$
- $-x \in B \land x \in A = x \in A \cap B$
- Thus, $x \in B (B A) \rightarrow x \in A \cap B$
- B–(B–A) ⊆ A∩B

Proof by Element Method

- Assume that x ∈ A∩B

 By definition of intersection, x ∈ A ∧ x ∈ B

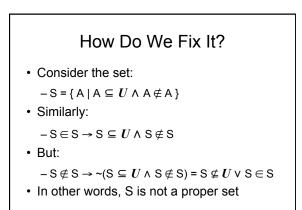
 Thus, we know that x ∉ B–A
- B-A includes all the elements in B but not in A
 Consider B-(B-A)
- We know $x \in B \land x \notin B-A$
- By definition of difference, $x \in B-(B-A)$
- $x \in A \cap B \rightarrow x \in B (B A)$
- A∩B ⊆ B–(B–A) ■

Russell's Paradox

- Consider the set:
- $-S = \{ A \mid A \text{ is a set } \land A \notin A \}$
- Is S an element of itself?

· Consider:

- $-S \in S$
- Then S can not be in itself, by definition
- S∉S
- Then S is in itself by definition
- Contradiction!



The Halting Problem

- Given a program P, and input I, will the program P ever terminate?
 Meaning will P(I) loop forever or halt?
- Can a computer program determine this? – Can a human?
- First shown by Alan Turing in 1936

Some Notes

- To "solve" the halting problem means we create a function CheckHalt(P,I)
 B is the program we are checking for halting
 - P is the program we are checking for halting
 I is the input to that program
- And it will return "loops forever" or "halts"
- Note it must work for *any* program, not just some programs, and *any* input

Perfect Numbers

Numbers whose divisors (not including the number) add up to the number

- 6 = 1 + 2 + 3

- -28 = 1 + 2 + 4 + 7 + 14
- The list of the first 10 perfect numbers:
 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744664692615953842176, 191561942608236107294793378084303638130997321
 548169216
 The last one use 54 divide!
 - The last one was 54 digits!
- All known perfect numbers are even; it's an open (i.e. unsolved) problem if odd perfect numbers exist

Where Does That Leave Us?

- If a human can't figure out how to do the halting problem, we can't make a computer do it for us
- It turns out that it is impossible to write such a CheckHalt() function

 But how to prove this?

CheckHalt()'s Non-existence

- Consider P(I): a program P with input I
- Suppose that CheckHalt(P,I) exists

 prints either "loop forever" or "halt"
- A program is a series of bits
 And thus can be considered data as well
- Thus, we can call CheckHalt(P,P)
 It's using the bits of program P as the input to program P

CheckHalt()'s non-existence

- Consider a new function: Test(P):
 - loops forever if CheckHalt(P,P) prints "halts" halts if CheckHalt(P,P) prints "loops forever"
- Now run Test(Test)
 - If Test(Test) halts...
 - Then CheckHalt(Test,Test) returns "loops forever"...
 Which means that Test(Test) loops forever
 - Contradiction!
 - If Test(Test) loops forever...
 - Then CheckHalt(Test,Test) returns "halts"...
 - Which means that Test(Test) halts
 - Contradiction!

The Halting Problem

- It was the first algorithm that was shown to not be able to exist
 - You can prove an existential by showing an example (a correct program)
 - But it's much harder to prove that a program can *never* exist