Recursion and Structural
Induction

CS231
Dianna Xu

3/24/16

Fibonacci Sequence
* Definition

— Non-recursive: F(n)= W

—Recursive: F(n) = F(n-1) + F(n-2)

* Must always specify base case(s)!
-F(1)=1,F2)=1

Fibonacci Sequence in Java

int F(int n) {
if ((n==1) || (n == 2))
return 1;
else

return F(n-1) + F(n-2);

Bad Recursive Definitions

» Consider:
-fl0)=1
—fln) =1+ f(n-2)
—What is f(1)?

» Consider:
-f(0)=1
—f(n) = 1+f(-n)
— What is (1)?

Defining Sets via Recursion

» Three components:
1. Base
2. Recursion

3. Restriction: nothing else belongs to the set
other than those generated by 1 and 2

» Example: the set of positive integers
— Base:1€S

— Recursion: if x€ S, then x+1 € S

Recursively Defined Sets

- The set of odd positive integers

-1€S8
- Ifxe S, thenx+2€ S

- The set of positive integer powers of 3

-3€S
- Ifxe S, then3*xE S

- The set of polynomials with integer coefficients

-0es
- If p(x) € S, then p(x) +cx"€ S
.. c€ZneZandn=20

Recursive String Definition

» Terminology
— M is the empty string:“”

— 3 is the alphabet, i.e. the set of all letters: { a,
b,c,...,z}

» We define a set of strings =* as follows
—Base: AEX*
—Ifwez*and x € X, then wx € =*

—Thus, =* is the set of all the possible strings
that can be generated with the alphabet

7

Length of a String

How to define string length recursively?
—Base: len(A) =0

— Recursion: len(wx) = len(w) + 1 if w € Z* and
xXez
« Example: len(“aba”)
—len(“aba”) = len(“ab”) + 1
—len(“ab”) =len(“a”) + 1
—len(“a”) =len(“”) + 1
—len(“”)=0
— Output: 3

3/24/16

Defining Strings via Recursion

* Letx={0, 1}

Thus, =* is the set of all binary numbers
— Or all binary strings

— Or all possible machine executables

Palindromes

* Give a recursive definition for the set of
strings that are palindromes

—We will define set P, which is the set of all
palindromes

* Base:
-LEP
—-XEPwhenxeZX

* Recursion: xpx€ Pifpe P, x€ X, pex*

Recursion vs. Induction

* Consider the recursive definition for
factorial:

—f(0) =1

Base

—f(n) = n*f(n-1)

Recursion

Recursion vs. Induction

» Consider the set of all positive integers
that are multiples of 3

-{3,6,9,12,15, ... }
—{x|x=3kand ke Z*}

* Recursive definition:
—Base:3€ S

—Recursion: If x€Sand y € S, then xty € S

Proof

* Prove that S contains all positive integers
divisible by 3
* Let P(n) =3n, n=21, show 3n € S
—Basecase: P(1)=3"1€ S
« By the base of the recursive definition
— Inductive hypothesis: P(k) = 3*k€ S
— Recursive step: show P(k+1) = 3*(k+1) € S
* 3*(k+1) = 3k+3
» 3k € S by the inductive hypothesis
* 3 € S by the base case
» Thus, 3k+3 € S by the recursive definition

3/24/16

What did we just do?

* Notice what we did:
— Showed the base case
— Assumed the inductive hypothesis

— For the recursive step, we:

» Showed that each of the “parts” were in S
— The parts being 3k and 3
» Showed that since both parts were in S, by the
recursive definition, the combination of those parts
isin S
—ie,3k+3ES
» This is called structural induction 1

Structural Induction

* A more convenient form of induction for
recursively defined “things“
» Used in conjunction with recursive definitions
* Three parts:
— Base step: Show the result holds for the elements in
the base of the recursive definition
— Inductive hypothesis: Assume that the statement is
true for some existing elements
— Recursive step: Show that the recursive definition
allows the creation of a new element using the
existing elements

Structural Induction on Strings

» Part (a): Give the definition for ones(s), which
counts the number of ones in a bit string s

e Let=={0,1}
» Base: ones(h) =0

» Recursion: ones(wx) = ones(w) + x
— Where x € X and w € =*
— Note that x is a bit: either 0 or 1

String Structural Induction Example

* Part §b}: Use structural induction to prove that ones(st) =
ones(s) + ones(t)

* Basecase:t=A
— ones (s'A) = ones(s) = ones(s)+0 = ones(s) + ones(A)

* Inductive hypothesis: Assume ones(s't) = ones(s) +
ones(t)

» Recursive step: Want to show that ones(s-t-x) = ones(s) +
ones(t-x)
— Where s, teE3*and x>
— New element is ones(st-x)
— ones (s't-x) = ones ((s't)x))
— = x+ones(st)
— =X +ones(s) +ones(t)
— =ones(s) + (x + ones(t))
— =ones(s) + ones(tx)

by associativity of concatenation
by recursive definition

by inductive hypothesis

by commutativity and assoc. of +

by recursive definition .

Induction Methods Compared

Weak Strong
i i Structural
Usually formulae not easily . N .
Used for Usually provable via mathematical | Only things defined via
formulae induction recursion
Assume statement is
Assumption Assume P(k) | Assume P(1), P(2), ..., P(k) true for some "old"
elements
Statement is true for
What to some "new" elements
prove True for P(k+1) True for P(k+1) created with "old"
elements
Step 1 called Base case Base case Basis step
Step 3 called Inductive step Inductive step Recursive step

Proof by Inductions

* Show that F(n) < 27
— Where F(n) is the n'" Fibonacci number

Fibonacci definition:
— Base: F(1)=1and F(2) =1
— Recursion: F(n) = F(n-1) + F(n-2)

Base case: Show true for F(1) and F(2)
—F(1)=1<21=2
—F@2)=1<22=4

3/24/16

Via weak mathematical induction

Inductive hypothesis: Assume F(k) < 2k

* Inductive step: Prove F(k+1) < 2k+1

— F(k+1) = F(k) + F(k-1)
— We know F(k) < 2 by the inductive hypothesis

— Each term is less than the next, therefore:
F(k-1) < F(k)
« Thus, F(k-1) < F(k) < 2k

— Therefore, F(k+1) = F(k) + F(k-1) < 2k + 2k =
2k+1]

20

Via strong mathematical induction

* Inductive hypothesis: Assume F(1) < 2!
F(2) <22, ..., F(k-1) < 2K, F(k) < 2k

* Inductive step: Prove F(k+1) < 2k*1
— F(k+1) = F(k) + F(k-1)
— We know F(k) < 2 by the inductive hypothesis

—We know F(k-1) < 2k' by the inductive
hypothesis

— Therefore, F(k) + F(k-1) < 2k + 2k1 < 2k+1 m

’

21

Via structural induction

Inductive hypothesis: Assume F(k) < 2k
Recursive step:

— Show true for “new element”: F(k+1)

— F(k+1) = F(k) + F(k-1)

— F(k) < 2k by the inductive hypothesis

— F(k-1) < F(k) < 2k

— Therefore, F(k) + F(k-1) < 2k + 2k = 2k+1

— Fk+1) <2k m

22

