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Fibonacci Sequence 

•  Definition 

– Non-recursive: 

– Recursive:     F(n) = F(n-1) + F(n-2) 
    

•  Must always specify base case(s)! 
– F(1) = 1, F(2) = 1 
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Fibonacci Sequence in Java 

 int F(int n) { 
  if ((n == 1) || (n == 2)) 
      return 1; 
  else 
      return F(n-1) + F(n-2); 
 } 
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Bad Recursive Definitions 

•  Consider: 
–  f(0) = 1 
–  f(n) = 1 + f(n-2) 
– What is f(1)? 

•  Consider: 
–  f(0) = 1 
–  f(n) = 1+f(-n) 
– What is f(1)? 
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Defining Sets via Recursion 

•  Three components: 
1.  Base  
2.  Recursion 
3.  Restriction: nothing else belongs to the set 

other than those generated by 1 and 2 
•  Example: the set of positive integers 

–  Base: 1 ∈ S 
–  Recursion: if x ∈ S, then x+1 ∈ S 
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Recursively Defined Sets 

•  The set of odd positive integers 
–  1 ∈ S 
–  If x ∈ S, then x+2 ∈ S 

•  The set of positive integer powers of 3 
–  3 ∈ S 
–  If x ∈ S, then 3*x ∈ S 

•  The set of polynomials with integer coefficients 
–  0 ∈ S 
–  If p(x) ∈ S, then p(x) + cxn ∈ S 

•  c  ∈ Z, n ∈ Z and n ≥ 0 
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Recursive String Definition 

•  Terminology 
– λ is the empty string:“” 
– Σ is the alphabet, i.e. the set of all letters: { a, 

b, c, …, z } 
•  We define a set of strings Σ* as follows 

– Base: λ ∈ Σ* 
–  If w ∈ Σ* and x ∈ Σ, then wx ∈ Σ* 
– Thus, Σ* is the set of all the possible strings 

that can be generated with the alphabet 
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Defining Strings via Recursion 

•  Let Σ = {0, 1} 
•  Thus, Σ* is the set of all binary numbers 

– Or all binary strings 
– Or all possible machine executables 

9 

Length of a String 

•  How to define string length recursively? 
– Base: len(λ) = 0 
– Recursion: len(wx) = len(w) + 1 if w ∈ Σ* and 

x ∈ Σ 
•  Example: len(“aba”) 

–  len(“aba”) = len(“ab”) + 1 
–  len(“ab”) = len(“a”) + 1 
–  len(“a”) = len(“”) + 1 
–  len(“”) = 0 
– Output: 3 
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Palindromes 

•  Give a recursive definition for the set of 
strings that are palindromes 
– We will define set P, which is the set of all 

palindromes 
•  Base:  

– λ ∈ P 
– x ∈ P when x ∈ Σ 

•  Recursion: xpx ∈ P if p ∈ P, x ∈ Σ, p ∈ Σ* 
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Recursion vs. Induction 

•  Consider the recursive definition for 
factorial: 

–  f(0) = 1 

–  f(n) = n * f(n-1) 

 

Base 

Recursion 
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Recursion vs. Induction 

•  Consider the set of all positive integers 
that are multiples of 3 
–  { 3, 6, 9, 12, 15, … } 
–  { x | x = 3k and k ∈ Z+ } 

•  Recursive definition: 
– Base: 3 ∈ S 
– Recursion: If x ∈ S and y ∈ S, then x+y ∈ S 
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Proof 
•  Prove that S contains all positive integers 

divisible by 3 
•  Let P(n) = 3n, n≥1, show 3n ∈ S 

– Base case: P(1) = 3*1 ∈ S 
•  By the base of the recursive definition 

–  Inductive hypothesis: P(k) = 3*k ∈ S  
– Recursive step: show P(k+1) = 3*(k+1) ∈ S 

•  3*(k+1) = 3k+3 
•  3k ∈ S by the inductive hypothesis 
•  3 ∈ S by the base case 
•  Thus, 3k+3 ∈ S by the recursive definition 
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What did we just do? 

•  Notice what we did: 
– Showed the base case 
– Assumed the inductive hypothesis 
– For the recursive step, we: 

•  Showed that each of the “parts” were in S 
–  The parts being 3k and 3 

•  Showed that since both parts were in S, by the 
recursive definition, the combination of those parts 
is in S 

–  i.e., 3k+3 ∈ S 

•  This is called structural induction 
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Structural Induction 
•  A more convenient form of induction for 

recursively defined “things“ 
•  Used in conjunction with recursive definitions 
•  Three parts: 

–  Base step: Show the result holds for the elements in 
the base of the recursive definition 

–  Inductive hypothesis: Assume that the statement is 
true for some existing elements 

–  Recursive step: Show that the recursive definition 
allows the creation of a new element using the 
existing elements 

16 

Structural Induction on Strings 

•  Part (a): Give the definition for ones(s), which 
counts the number of ones in a bit string s 

•  Let Σ = { 0, 1 } 

•  Base: ones(λ) = 0 

•  Recursion: ones(wx) = ones(w) + x 
–  Where x ∈ Σ and w ∈ Σ* 
–  Note that x is a bit: either 0 or 1 
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String Structural Induction Example 
•  Part (b): Use structural induction to prove that ones(st) = 

ones(s) + ones(t) 
•  Base case: t = λ 

–  ones (s·λ) = ones(s) = ones(s)+0 = ones(s) + ones(λ) 
•  Inductive hypothesis: Assume ones(s·t) = ones(s) + 

ones(t) 
•  Recursive step: Want to show that ones(s·t·x) = ones(s) + 

ones(t·x) 
–  Where s, t ∈ Σ* and x ∈ Σ 
–  New element is ones(s·t·x) 
–  ones (s·t·x) = ones ((s·t)·x))  by associativity of concatenation 
–  = x+ones(s·t)    by recursive definition 
–  = x + ones(s) + ones(t)   by inductive hypothesis 
–  = ones(s) + (x + ones(t))   by commutativity and assoc. of + 
–  = ones(s) + ones(t·x)   by recursive definition 
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Induction Methods Compared 
Weak 

Mathematical 
 

Strong 
Mathematical 

 
Structural 

 

Used for 
 

Usually 
formulae 

 

Usually formulae not easily 
provable via mathematical 

induction 
Only things defined via 

recursion 
 

Assumption 
 

Assume P(k) 
 

Assume P(1), P(2), …,  P(k) 
 

Assume statement is 
true for some "old" 

elements 

What to 
prove 

 
True for P(k+1) 

 
True for P(k+1) 

 

Statement is true for 
some "new" elements 

created with "old" 
elements 

Step 1 called Base case 
 

Base case 
 

Basis step 
 

Step 3 called Inductive step 
 

Inductive step 
 

Recursive step 
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Proof by Inductions 
•  Show that F(n) < 2n 

–  Where F(n) is the nth Fibonacci number 
 
•  Fibonacci definition: 

–  Base: F(1) = 1 and F(2) = 1 
–  Recursion: F(n) = F(n-1) + F(n-2) 

•  Base case: Show true for F(1) and F(2) 
–  F(1) = 1 < 21 = 2 
–  F(2) = 1 < 22 = 4 
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Via weak mathematical induction 

•  Inductive hypothesis: Assume F(k) < 2k 

•  Inductive step: Prove F(k+1) < 2k+1 
– F(k+1) = F(k) + F(k-1) 
– We know F(k) < 2k by the inductive hypothesis 
– Each term is less than the next, therefore: 

F(k-1) < F(k) 
•  Thus, F(k-1) < F(k) < 2k 

– Therefore, F(k+1) = F(k) + F(k-1) < 2k + 2k = 
2k+1 n 
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Via strong mathematical induction 

•  Inductive hypothesis: Assume F(1) < 21, 
F(2) < 22, …, F(k-1) < 2k-1, F(k) < 2k 

•  Inductive step: Prove F(k+1) < 2k+1 
– F(k+1) = F(k) + F(k-1) 
– We know F(k) < 2k by the inductive hypothesis 
– We know F(k-1) < 2k-1 by the inductive 

hypothesis 
– Therefore, F(k) + F(k-1) < 2k + 2k-1 < 2k+1 n 
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Via structural induction 

•  Inductive hypothesis: Assume F(k) < 2k 
•  Recursive step:  

– Show true for “new element”: F(k+1) 
– F(k+1) = F(k) + F(k-1) 
– F(k) < 2k by the inductive hypothesis 
– F(k-1) < F(k) < 2k 

– Therefore, F(k) + F(k-1) < 2k + 2k = 2k+1 

– F(k+1) < 2k+1 n 
 


