Recursion and Structural Induction

CS231 Dianna Xu

Fibonacci Sequence

- Definition
 - Non-recursive: $F(n) = \frac{\left(1 + \sqrt{5}\right)^n \left(1 \sqrt{5}\right)^n}{\sqrt{5} \cdot 2^n}$
 - Recursive: F(n) = F(n-1) + F(n-2)
- Must always specify base case(s)!
 - -F(1) = 1, F(2) = 1

2

Fibonacci Sequence in Java

```
int F(int n) {
   if ((n == 1) || (n == 2))
      return 1;
   else
      return F(n-1) + F(n-2);
}
```

3

Bad Recursive Definitions

- · Consider:
- -f(0) = 1
- -f(n) = 1 + f(n-2)
- What is f(1)?
- · Consider:
 - -f(0)=1
 - -f(n) = 1+f(-n)
 - What is f(1)?

4

Defining Sets via Recursion

- Three components:
 - 1. Base
 - 2. Recursion
 - 3. Restriction: nothing else belongs to the set other than those generated by 1 and 2
- · Example: the set of positive integers
 - Base: 1 ∈ S
 - Recursion: if x ∈ S, then x+1 ∈ S

5

Recursively Defined Sets

- · The set of odd positive integers
 - $-1 \in S$
 - If $x \in S$, then $x+2 \in S$
- · The set of positive integer powers of 3
 - -3∈S
 - If x ∈ S, then 3*x ∈ S
- The set of polynomials with integer coefficients
 - $-0 \in S$
 - If $p(x) \in S$, then $p(x) + cx^n \in S$ • $c \in \mathbf{Z}$, $n \in \mathbf{Z}$ and $n \ge 0$

Recursive String Definition

- Terminology
 - $-\lambda$ is the empty string:""
 - Σ is the alphabet, i.e. the set of all letters: { a, b, c, ..., z }
- We define a set of strings Σ^* as follows
 - Base: λ ∈ Σ *
 - If $w \in \Sigma^*$ and $x \in \Sigma$, then $wx \in \Sigma^*$
 - Thus, Σ^* is the set of all the possible strings that can be generated with the alphabet

7

Defining Strings via Recursion

- Let $\Sigma = \{0, 1\}$
- Thus, Σ^* is the set of all binary numbers
 - Or all binary strings
 - Or all possible machine executables

8

Length of a String

- · How to define string length recursively?
 - Base: len(λ) = 0
 - Recursion: len(wx) = len(w) + 1 if $w \in \Sigma^*$ and $x \in \Sigma$
- Example: len("aba")
 - len("aba") = len("ab") + 1
 - -len("ab") = len("a") + 1
 - len("a") = len("") + 1
 - len("") = 0
 - Output: 3

9

Palindromes

- Give a recursive definition for the set of strings that are palindromes
 - We will define set P, which is the set of all palindromes
- Base:
 - $-\lambda \in P$
 - $-x \in P$ when $x \in \Sigma$
- Recursion: $xpx \in P$ if $p \in P$, $x \in \Sigma$, $p \in \Sigma^*$

10

Recursion vs. Induction

- Consider the recursive definition for factorial:
 - $-\underline{\underline{f(0)}} = 1$
 - $-\underline{\mathsf{f}(n)} = n * \underline{\mathsf{f}(n\text{-}1)}$

Recursion

11

Recursion vs. Induction

- Consider the set of all positive integers that are multiples of 3
 - -{3, 6, 9, 12, 15, ...}
 - $-\{x \mid x = 3k \text{ and } k \in \mathbf{Z}^+\}$
- · Recursive definition:
 - Base: 3 ∈ S
 - Recursion: If $x \in S$ and $y \in S$, then $x+y \in S$

Proof

- \bullet Prove that S contains all positive integers divisible by 3
- Let P(n) = 3n, $n \ge 1$, show $3n \in S$
 - Base case: P(1) = 3*1 ∈ S
 - By the base of the recursive definition
 - Inductive hypothesis: P(k) = 3*k ∈ S
 - Recursive step: show P(k+1) = 3*(k+1) ∈ S
 - 3*(k+1) = 3k+3
 - $3k \in S$ by the inductive hypothesis
 - $3 \in S$ by the base case
 - Thus, $3k+3 \in S$ by the recursive definition

13

What did we just do?

- · Notice what we did:
 - Showed the base case
 - Assumed the inductive hypothesis
 - For the recursive step, we:
 - Showed that each of the "parts" were in S
 The parts being 3k and 3
 - Showed that since both parts were in *S*, by the recursive definition, the combination of those parts is in *S*
 - i.e., 3k+3 ∈ S
- · This is called structural induction

Structural Induction

- A more convenient form of induction for recursively defined "things"
- · Used in conjunction with recursive definitions
- · Three parts:
 - Base step: Show the result holds for the elements in the base of the recursive definition
 - Inductive hypothesis: Assume that the statement is true for some existing elements
 - Recursive step: Show that the recursive definition allows the creation of a new element using the existing elements

15

Structural Induction on Strings

- Part (a): Give the definition for *ones(s)*, which counts the number of ones in a bit string s
- Let $\Sigma = \{0, 1\}$
- Base: $ones(\lambda) = 0$
- Recursion: ones(wx) = ones(w) + x
 - Where $x \in \Sigma$ and $w \in \Sigma^*$
 - Note that x is a bit: either 0 or 1

16

String Structural Induction Example

- Part (b): Use structural induction to prove that ones(st) = ones(s) + ones(t)
- Base case: $t = \lambda$
 - ones $(s \cdot \lambda)$ = ones(s) = ones(s) + ones(s) + ones(s) | ones(s) | ones(s) | ones(s) | ones(s) | ones(s) |
- Inductive hypothesis: Assume ones(s·t) = ones(s) + ones(t)
- Recursive step: Want to show that ones(s·t·x) = ones(s) + ones(t·x)
 - Where $s, t \in \Sigma^*$ and $x \in \Sigma$
 - New element is ones(s·t·x)ones (s·t·x) = ones ((s·t)·x))
 - $= x + ones(s \cdot t)$
 - = x + ones(s) + ones(t)
 - = ones(s) + (x + ones(t)) $= ones(s) + ones(t \cdot x)$
- by associativity of concatenation by recursive definition
- by inductive hypothesis by commutativity and assoc. of +
- by recursive definition

Induction Methods Compared

	Weak Mathematical	Strong Mathematical	Structural
Used for	Usually formulae	Usually formulae not easily provable via mathematical induction	Only things defined via recursion
Assumption	Assume P(k)	Assume P(1), P(2),, P(k)	Assume statement is true for some "old" elements
What to prove	True for P(k+1)	True for P(k+1)	Statement is true for some "new" elements created with "old" elements
Step 1 called	Base case	Base case	Basis step
Step 3 called	Inductive step	Inductive step	Recursive step

Proof by Inductions

- Show that *F*(*n*) < 2ⁿ
 - Where F(n) is the n^{th} Fibonacci number
- · Fibonacci definition:
 - Base: F(1) = 1 and F(2) = 1
 - Recursion: F(n) = F(n-1) + F(n-2)
- Base case: Show true for F(1) and F(2)
 - $F(1) = 1 < 2^1 = 2$ $F(2) = 1 < 2^2 = 4$

Via weak mathematical induction

- Inductive hypothesis: Assume $F(k) < 2^k$
- Inductive step: Prove $F(k+1) < 2^{k+1}$
 - -F(k+1) = F(k) + F(k-1)
 - We know $F(k) < 2^k$ by the inductive hypothesis
 - Each term is less than the next, therefore: F(k-1) < F(k)
 - Thus, $F(k-1) < F(k) < 2^k$
 - Therefore, $F(k+1) = F(k) + F(k-1) < 2^k + 2^k =$

Via strong mathematical induction

- Inductive hypothesis: Assume $F(1) < 2^1$, $F(2) < 2^2, ..., F(k-1) < 2^{k-1}, F(k) < 2^k$
- Inductive step: Prove F(k+1) < 2^{k+1}
 - -F(k+1) = F(k) + F(k-1)
 - We know $F(k) < 2^k$ by the inductive hypothesis
 - We know $F(k-1) < 2^{k-1}$ by the inductive hypothesis
 - Therefore, F(k) + F(k-1) < 2^k + 2^{k-1} < 2^{k+1} ■

21

Via structural induction

- Inductive hypothesis: Assume $F(k) < 2^k$
- Recursive step:
 - Show true for "new element": F(k+1)
 - -F(k+1) = F(k) + F(k-1)
 - $-F(k) < 2^k$ by the inductive hypothesis
 - $-F(k-1) < F(k) < 2^k$
 - Therefore, $F(k) + F(k-1) < 2^k + 2^k = 2^{k+1}$
 - -F(k+1) < 2^{k+1} ■