
3/24/16

1

1

Recursion and Structural
Induction

CS231
Dianna Xu

2

Fibonacci Sequence

•  Definition

– Non-recursive:

– Recursive: F(n) = F(n-1) + F(n-2)

•  Must always specify base case(s)!
– F(1) = 1, F(2) = 1

() ()
n

nn

nF
25

5151)(
⋅

−−+
=

3

Fibonacci Sequence in Java

 int F(int n) {
 if ((n == 1) || (n == 2))
 return 1;
 else
 return F(n-1) + F(n-2);
 }

4

Bad Recursive Definitions

•  Consider:
–  f(0) = 1
–  f(n) = 1 + f(n-2)
– What is f(1)?

•  Consider:
–  f(0) = 1
–  f(n) = 1+f(-n)
– What is f(1)?

5

Defining Sets via Recursion

•  Three components:
1.  Base
2.  Recursion
3.  Restriction: nothing else belongs to the set

other than those generated by 1 and 2
•  Example: the set of positive integers

–  Base: 1 ∈ S
–  Recursion: if x ∈ S, then x+1 ∈ S

6

Recursively Defined Sets

•  The set of odd positive integers
–  1 ∈ S
–  If x ∈ S, then x+2 ∈ S

•  The set of positive integer powers of 3
–  3 ∈ S
–  If x ∈ S, then 3*x ∈ S

•  The set of polynomials with integer coefficients
–  0 ∈ S
–  If p(x) ∈ S, then p(x) + cxn ∈ S

•  c ∈ Z, n ∈ Z and n ≥ 0

3/24/16

2

7

Recursive String Definition

•  Terminology
– λ is the empty string:“”
– Σ is the alphabet, i.e. the set of all letters: { a,

b, c, …, z }
•  We define a set of strings Σ* as follows

– Base: λ ∈ Σ*
–  If w ∈ Σ* and x ∈ Σ, then wx ∈ Σ*
– Thus, Σ* is the set of all the possible strings

that can be generated with the alphabet
8

Defining Strings via Recursion

•  Let Σ = {0, 1}
•  Thus, Σ* is the set of all binary numbers

– Or all binary strings
– Or all possible machine executables

9

Length of a String

•  How to define string length recursively?
– Base: len(λ) = 0
– Recursion: len(wx) = len(w) + 1 if w ∈ Σ* and

x ∈ Σ
•  Example: len(“aba”)

–  len(“aba”) = len(“ab”) + 1
–  len(“ab”) = len(“a”) + 1
–  len(“a”) = len(“”) + 1
–  len(“”) = 0
– Output: 3

10

Palindromes

•  Give a recursive definition for the set of
strings that are palindromes
– We will define set P, which is the set of all

palindromes
•  Base:

– λ ∈ P
– x ∈ P when x ∈ Σ

•  Recursion: xpx ∈ P if p ∈ P, x ∈ Σ, p ∈ Σ*

11

Recursion vs. Induction

•  Consider the recursive definition for
factorial:

–  f(0) = 1

–  f(n) = n * f(n-1)

Base

Recursion

12

Recursion vs. Induction

•  Consider the set of all positive integers
that are multiples of 3
–  { 3, 6, 9, 12, 15, … }
–  { x | x = 3k and k ∈ Z+ }

•  Recursive definition:
– Base: 3 ∈ S
– Recursion: If x ∈ S and y ∈ S, then x+y ∈ S

3/24/16

3

13

Proof
•  Prove that S contains all positive integers

divisible by 3
•  Let P(n) = 3n, n≥1, show 3n ∈ S

– Base case: P(1) = 3*1 ∈ S
•  By the base of the recursive definition

–  Inductive hypothesis: P(k) = 3*k ∈ S
– Recursive step: show P(k+1) = 3*(k+1) ∈ S

•  3*(k+1) = 3k+3
•  3k ∈ S by the inductive hypothesis
•  3 ∈ S by the base case
•  Thus, 3k+3 ∈ S by the recursive definition

14

What did we just do?

•  Notice what we did:
– Showed the base case
– Assumed the inductive hypothesis
– For the recursive step, we:

•  Showed that each of the “parts” were in S
–  The parts being 3k and 3

•  Showed that since both parts were in S, by the
recursive definition, the combination of those parts
is in S

–  i.e., 3k+3 ∈ S

•  This is called structural induction

15

Structural Induction
•  A more convenient form of induction for

recursively defined “things“
•  Used in conjunction with recursive definitions
•  Three parts:

–  Base step: Show the result holds for the elements in
the base of the recursive definition

–  Inductive hypothesis: Assume that the statement is
true for some existing elements

–  Recursive step: Show that the recursive definition
allows the creation of a new element using the
existing elements

16

Structural Induction on Strings

•  Part (a): Give the definition for ones(s), which
counts the number of ones in a bit string s

•  Let Σ = { 0, 1 }

•  Base: ones(λ) = 0

•  Recursion: ones(wx) = ones(w) + x
–  Where x ∈ Σ and w ∈ Σ*
–  Note that x is a bit: either 0 or 1

17

String Structural Induction Example
•  Part (b): Use structural induction to prove that ones(st) =

ones(s) + ones(t)
•  Base case: t = λ

–  ones (s·λ) = ones(s) = ones(s)+0 = ones(s) + ones(λ)
•  Inductive hypothesis: Assume ones(s·t) = ones(s) +

ones(t)
•  Recursive step: Want to show that ones(s·t·x) = ones(s) +

ones(t·x)
–  Where s, t ∈ Σ* and x ∈ Σ
–  New element is ones(s·t·x)
–  ones (s·t·x) = ones ((s·t)·x)) by associativity of concatenation
–  = x+ones(s·t) by recursive definition
–  = x + ones(s) + ones(t) by inductive hypothesis
–  = ones(s) + (x + ones(t)) by commutativity and assoc. of +
–  = ones(s) + ones(t·x) by recursive definition

18

Induction Methods Compared
Weak

Mathematical

Strong
Mathematical

Structural

Used for

Usually
formulae

Usually formulae not easily
provable via mathematical

induction
Only things defined via

recursion

Assumption

Assume P(k)

Assume P(1), P(2), …, P(k)

Assume statement is
true for some "old"

elements

What to
prove

True for P(k+1)

True for P(k+1)

Statement is true for
some "new" elements

created with "old"
elements

Step 1 called Base case

Base case

Basis step

Step 3 called Inductive step

Inductive step

Recursive step

3/24/16

4

19

Proof by Inductions
•  Show that F(n) < 2n

–  Where F(n) is the nth Fibonacci number

•  Fibonacci definition:

–  Base: F(1) = 1 and F(2) = 1
–  Recursion: F(n) = F(n-1) + F(n-2)

•  Base case: Show true for F(1) and F(2)
–  F(1) = 1 < 21 = 2
–  F(2) = 1 < 22 = 4

20

Via weak mathematical induction

•  Inductive hypothesis: Assume F(k) < 2k

•  Inductive step: Prove F(k+1) < 2k+1
– F(k+1) = F(k) + F(k-1)
– We know F(k) < 2k by the inductive hypothesis
– Each term is less than the next, therefore:

F(k-1) < F(k)
•  Thus, F(k-1) < F(k) < 2k

– Therefore, F(k+1) = F(k) + F(k-1) < 2k + 2k =
2k+1 n

21

Via strong mathematical induction

•  Inductive hypothesis: Assume F(1) < 21,
F(2) < 22, …, F(k-1) < 2k-1, F(k) < 2k

•  Inductive step: Prove F(k+1) < 2k+1
– F(k+1) = F(k) + F(k-1)
– We know F(k) < 2k by the inductive hypothesis
– We know F(k-1) < 2k-1 by the inductive

hypothesis
– Therefore, F(k) + F(k-1) < 2k + 2k-1 < 2k+1 n

22

Via structural induction

•  Inductive hypothesis: Assume F(k) < 2k
•  Recursive step:

– Show true for “new element”: F(k+1)
– F(k+1) = F(k) + F(k-1)
– F(k) < 2k by the inductive hypothesis
– F(k-1) < F(k) < 2k

– Therefore, F(k) + F(k-1) < 2k + 2k = 2k+1

– F(k+1) < 2k+1 n

