
3/1/16

1

1

Correctness of Algorithm

CS 231
Dianna Xu

What does it mean for a
program to be correct?

•  Syntax errors
•  Implementation errors
•  Logical errors (algorithmic errors)

– This part can be proved mathematically
– “We now take the position that it is not only

the programmer's task to produce a correct
program, but also to demonstrate its
correctness in a convincing manner” –
Dijkstra, 1967

2

Predicates
•  An algorithm is designed to produce a

certain final state (post-condition) from a
certain initial state (pre-condition).

•  Proof of correctness: show that if the pre-
condition is true for a collection of values,
then the post-condition is also true.

3

Example

•  Algorithm to compute a product of two
nonnegative integers
– Pre-condition: input variables x and y are non-

negative integers
– Post-condition: output variable p = xy

4

Correctness of a loop

•  Method to prove the correctness of a loop
•  Given a while loop, entry restricted by a

condition G (guard).
Pre-condition for the loop
while (G)
 body
end while
Post-condition for the loop

5

Loop Invariant Theorem

•  Given a predicate I(n), a loop is correct if:
–  Basis: I(0) is true before the first iteration of the loop
–  Inductive: For all integers k ≥ 0, G ∧ I(k) before any

iteration → I(k+1) after the iteration
–  Eventual Guard Falsity: After a finite number of

iterations, G becomes false
–  Correctness of post-condition: If I(N) is true when N is

the least number of iterations after which G is false,
the values of the algorithm variables will be as
specified in the post-condition.

6

3/1/16

2

Loop to compute a product

 Pre-condition: x and y are nonnegative
integers, i = 0 and product = 0

 while (i≠x)
 product := product + y
 i := i+1
 end while
 Post-condition: product = xy
 Loop invariant: I(n): i = n ∧ product = ny

7

Proof
•  Base: I(0): i=0 and product = 0*y
•  Inductive: G ∧ I(k) before iteration → I(k

+1) after iteration
–  inductive hypothesis:
–  i=k ∧ product = ky
–  inductive step:
– product = product + y = ky + y = (k+1)y
–  i = i+1 = k+1

8

Proof
•  Falsity of Guard: after x iterations, i=x
•  Correctness of Post-condition:

– N=x
–  i=N ∧ product = Ny
–  i=x ∧ product = xy

9

Loop Invariant

•  A statement of conditions that must be
true on entry into a loop and are
guaranteed to remain true after every
iteration of the loop

•  Inductive invariant
•  Finding the right one is often the hardest

part of proving the correctness of a loop
•  Loop invariant and negated guard implies

post-condition – must be strong enough
10

Loop

 Pre-condition: x = 0, i = 2
 while (i<=10)
 x := x + i*i
 i := i+1
 end while
 Post-condition: x = sum of squares of 2-10
 Loop invariant: I(n): i = n ∧ x =

11

i2
i=2

n

∑

•  Thinking about loops in terms of invariants
help you avoid errors and bad practices:
– off by one errors
– wrong/missing code in the loop body
– declarations of variables outside the loop that

are only used inside the loop body

12

3/1/16

3

Finding the Max Element

Pre-condition: a1, a2…an ϵ Z, max:= a1

for (i:= 2 to n)
 if (max < ai) then max:= ai
 next i
Post-condition:
max = the largest value in {a}

13

