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Correctness of Algorithm 

CS 231 
Dianna Xu 

What does it mean for a 
program to be correct? 

•  Syntax errors 
•  Implementation errors 
•  Logical errors (algorithmic errors) 

– This part can be proved mathematically 
– “We now take the position that it is not only 

the programmer's task to produce a correct 
program, but also to demonstrate its 
correctness in a convincing manner” – 
Dijkstra, 1967 
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Predicates 
•  An algorithm is designed to produce a 

certain final state (post-condition) from a 
certain initial state (pre-condition). 

•  Proof of correctness: show that if the pre-
condition is true for a collection of values, 
then the post-condition is also true. 
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Example 

•  Algorithm to compute a product of two 
nonnegative integers 
– Pre-condition: input variables x and y are non-

negative integers 
– Post-condition: output variable p = xy 
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Correctness of a loop 

•  Method to prove the correctness of a loop 
•  Given a while loop, entry restricted by a 

condition G (guard). 
Pre-condition for the loop 
while (G) 
   body 
end while 
Post-condition for the loop 
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Loop Invariant Theorem 

•  Given a predicate I(n), a loop is correct if: 
–  Basis: I(0) is true before the first iteration of the loop 
–  Inductive: For all integers k ≥ 0, G ∧ I(k) before any 

iteration → I(k+1) after the iteration 
–  Eventual Guard Falsity: After a finite number of 

iterations, G becomes false 
–  Correctness of post-condition: If I(N) is true when N is 

the least number of iterations after which G is false, 
the values of the algorithm variables will be as 
specified in the post-condition. 
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Loop to compute a product 

 Pre-condition: x and y are nonnegative 
integers, i = 0 and product = 0 

 while (i≠x) 
      product := product + y 
      i := i+1 
 end while 
 Post-condition: product = xy 
 Loop invariant: I(n): i = n ∧ product = ny 
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Proof 
•  Base: I(0): i=0 and product = 0*y 
•  Inductive: G ∧ I(k) before iteration → I(k

+1) after iteration 
–  inductive hypothesis:  
–  i=k ∧ product = ky 
–  inductive step: 
– product = product + y = ky + y = (k+1)y 
–  i = i+1 = k+1 
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Proof 
•  Falsity of Guard: after x iterations, i=x 
•  Correctness of Post-condition:  

– N=x 
–  i=N ∧ product = Ny  
–  i=x ∧ product = xy 
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Loop Invariant 

•  A statement of conditions that must be 
true on entry into a loop and are 
guaranteed to remain true after every 
iteration of the loop 

•  Inductive invariant 
•  Finding the right one is often the hardest 

part of proving the correctness of a loop 
•  Loop invariant and negated guard implies 

post-condition – must be strong enough 
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Loop 

 Pre-condition: x = 0, i = 2 
 while (i<=10) 
      x := x + i*i 
      i := i+1 
 end while 
 Post-condition: x = sum of squares of 2-10 
 Loop invariant: I(n): i = n ∧ x =  
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i2
i=2

n

∑

•  Thinking about loops in terms of invariants 
help you avoid errors and bad practices: 
– off by one errors 
– wrong/missing code in the loop body 
– declarations of variables outside the loop that 

are only used inside the loop body  
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Finding the Max Element 

Pre-condition: a1, a2…an ϵ Z, max:= a1 

for (i:= 2 to n) 
 if (max < ai) then max:= ai 
 next i 
Post-condition: 
max = the largest value in {a} 
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