Indirect Argument

CS 231 Dianna Xu

1

Proof by Contraposition

- Consider an implication: $p \rightarrow q$
 - Its contrapositive is $\sim q \rightarrow \sim p$
 - If the antecedent $(\sim\!q)$ is false, then the contrapositive is always true
 - Thus, show that if $\sim q$ is true, then $\sim p$ is true
- To perform a proof by contraposition, do a direct proof on the contrapositive

2

Indirect proof example

- If n² is an odd integer then n is an odd integer
- Prove the contrapositive: If *n* is an even integer, then *n*² is an even integer
- Proof:
 - $-\exists k \in \mathbb{Z}_{\bullet} n=2k$
 - $-n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
 - $-2k^2 \in \mathbb{Z}$
 - $-n^2$ is even ■

3

Which to use

- When do you use a direct proof versus an indirect proof?
- If it's not clear from the problem, try direct first, then indirect second
 - If indirect fails, try the other proofs

4

Direct versus Indirect

- Prove that if n is an integer and n^3+5 is odd, then n is even
- · Via direct proof
 - $-\exists k \in \dot{\mathcal{Z}}, n^3+5 = 2k+1$ (definition of odd numbers)
 - $-n^3 = 2k-4$
 - $-n = \sqrt[3]{2k-4}$
 - Umm...
- So direct proof didn't work out. Next up: indirect proof

Direct versus Indirect

- Prove that if n is an integer and n³+5 is odd, then n is even
- · Via indirect proof
 - Contrapositive: If n is odd, then n^3+5 is even
 - $-\exists k \in \mathbb{Z}$, n=2k+1 (definition of odd numbers)
 - $-n^3+5 = (2k+1)^3+5 = 8k^3+12k^2+6k+6 = 2(4k^3+6k^2+3k+3)$
 - $-(4k^3+6k^2+3k+3) \in \mathbb{Z}$
 - $-n^3+5$ is even ■

6

Proof by Contradiction

- Given a statement p, assume it is false
 - Assume ~p
- Prove that ~p cannot occur
 - -~p→c
 - A contradiction exists
- Given a statement of the form $p \rightarrow q$
 - -To assume it's false, you only have to consider the case where p is true and q is false

7

Example

- For any integer a and any prime p, if p|a then p/(a+1)
- · Proof:
 - Assume p|a and p|(a+1)
 - $-\exists r,s \in \mathcal{Z}, a = rp \text{ and } a+1 = sp$
 - -1 = sp-a = sp-rp = (s-r)p
 - $-s-r \in \mathbb{Z} \land 1 = (s-r)p \rightarrow p \mid 1$
 - $-p|1 \wedge p$ is prime
 - Contradiction ■

8

Contradiction and Contraposition

- $\forall x \in D, P(x) \rightarrow Q(x)$
- Contraposition: prove by giving a direct proof for $\forall x \in D$, $\sim Q(x) \rightarrow \sim P(x)$
 - Suppose x is an arbitrary element of D, such that $\sim Q(x)$
 - Prove ~P(x)
- · Contradiction:
 - Suppose ∃ $x \in D$ such that $P(x) \land \sim Q(x)$
 - Prove for a contradiction

9

The Infinitude of Primes

- Theorem (by Euclid): There are infinitely many prime numbers.
- Proof
 - Assume there are a finite number of primes $p_1,\ p_2\ \dots,\ p_n.$
 - Consider the number $q = p_1p_2 \dots p_n + 1$
 - This number is not divisible by any of the listed primes
 If we divided p_i into q, it would result in a remainder of 1
 - We must conclude that q is a prime number, and q is not among the primes listed above.
 - Contradiction ■

10

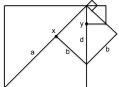
The Irrationality of $\sqrt{2}$

- Theorem: √2 is irrational
- Proof
 - Assume √2 is rational
 - $-\exists r \in \mathcal{Q}, r^2 = 2$
 - $-\exists a,b \in \mathcal{Z}$, $(a/b)^2 = 2$ and a,b have no common factors
 - $-a^2/b^2=2$
 - $-a^2 = 2b^2$ (implies a^2 is even and hence a is even)
 - $-a^2 = (2k)^2 = 4k^2 = 2b^2$
 - $-2k^2 = b^2$ (implies b^2 is even and hence b is even)
 - a and b are both even, and have the common factor 2
 - Contradiction ■

11

$\sqrt{2}$ and the Infinite Descent

• Eudoxus ladder $\sqrt{2} = \lim_{n \to \infty} \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$



12