

	Table 1.5.3					
Hexadecimal	Decimal	Hexadecimal	4-Bit Binary Equivalent			
rioxadooimai	0	0	0000			
	1	1	0001			
 Often written with a 	2	2	0010			
'0x' prefix	3	3	0011			
0x10 io 10 or 16	4	4	0100			
$-0.00101510_{16}0110_{10}$	5	5	0101			
 – 0x100 is 100₁₆, or 256₁₀ 	6	6	0110			
 Binary numbers easily 	7	7	0111			
translate [.]	8	8	1000			
	9	9	1001			
 In blocks of 4 	10	А	1010			
	11	В	1011			
	12	С	1100			
	13	D	1101			
	14	E	1110			
	15	F	1111			

7£	45	4c	46	01	02	01	00	00	00	00	00	00	00	00	00	.ELF
00	02	00	02	00	00	00	01	00	01	06	68	00	00	00	34	hh4
00	00	12	b8	00	00	00	00	00	34	00	20	00	05	00	28	
00	19	00	17	00	00	00	06	00	00	00	34	00	01	00	34	4 4
00	00	00	00	00	00	00	a0	00	00	00	a0	00	00	00	05	
00	00	00	00	00	00	00	03	00	00	00	d4	00	00	00	00	
00	00	00	00	00	00	00	11	00	00	00	00	00	00	00	04	
00	00	00	00	00	00	00	01	00	00	00	00	00	01	00	00	
00	00	00	00	00	00	08	4e	00	00	08	4e	00	00	00	05	NN.
00	01	00	00	00	00	00	01	00	00	08	50	00	02	08	50	PP
00	00	00	00	00	00	01	28	00	00	01	2c	00	00	00	07	(,
00	01	00	00	00	00	00	02	00	00	08	c0	00	02	08	c0	
00	00	00	00	00	00	00	a8	00	00	00	00	00	00	00	07	
00	00	00	00	2f	75	73	72	2f	6c	69	62	2f	6c	64	2e	/usr/lib/ld.
73	6f	2e	31	00	00	00	00	00	00	00	11	00	00	00	2a	so.1*
00	00	00	11	00	00	00	27	00	00	00	22	00	00	00	00	
00	00	00	20	00	00	00	00	00	00	00	00	00	00	00	00	

Parallel adders and number of gates

- A half adder has 4 logic gates
- A full adder has two half adders plus an OR gate
 Total of 9 logic gates
- To add *n* bit binary numbers,
 1 HA + *n*-1 FAs
- To add 32 bit binary numbers,
 1 HA + 31 FA = 4+9*31 = 283 logic gates
- 1 HA + 31 FA = $4+9^{-31} = 283$ logic gates • To add 64 bit binary numbers,
- 1 HA + 63 FA = 4+9*63 = 571 logic gates

20

More about logic gates

- To implement a logic gate in hardware, you use a transistor
- Transistors are all enclosed in an "IC", or integrated circuit
- 1971 Intel's first microprocessor (4004): 2300 transistors
- 1993 Intel Pentium processor: 3.1 million
- 2006 Dual-core Itanium 2: 1.7 billion
- 2011 10-core Xeon Westmere-Ex: 2.6 billion

21

Two's Complement

- Given a positive integer *a*, the two's complement of *a* is the n-bit representation of $2^n a$
- $2^8 35 = 256 35 = 221 = 11011101_2$
- a's two's complement represents -a
- Always relative to a fixed bit length
- Bit length of 32 and 64 are most commonly used

22

One's Complement

- An easier way to calculate two's complement
- $2^8 a = (2^8 1) a + 1$
- $2^8 1 = 11111111_2$
- Subtracting any binary number from all 1's is equivalent to negating all bits, i.e. taking the one's complement

Example $2^8 - 35 = (2^8 - 1) - 35 + 1 =$

 $- 00100011_{2}$ $11011100_{2} + 1 = 11011101_{2} = 221$

23

26

Two's Complement Again

- To find the two's complement of a positive integer *a*:
 - Write the n-bit binary representation for \boldsymbol{a}
 - Negate all bits
 - Add 1 to the resulting binary notation

25

27

8-bit Representations

Integer	8-bit Binary	2's complement			
127	0111111				
126	0111110				
2	00000010				
1	0000001				
0	00000000				
-1	1111111	2^8 - 1			
-2	1111110	2^8 - 2			
-3	11111101	2^8 - 3			
-127	10000001	2^8 - 127			
-128	1000000	2^8 - 128			

Addition with Negative Numbers

64-15 = 64 + (-15) = $01000000_2 + ((11111111_2 - 00001111_2) + 1_2) =$ $01000000_2 + 11110001_2$ 01000000_2 11110001_2 $00110001_2 = 49$ From ThinkGeek (http:// www.thinkgeek.com) There are only 10 types of people in the world: Those who understand binary and those who don't.