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1 Sequences and Summation

A sequence is a function whose domain is either all the integers between two given integers or all the
integers greater than or equal to a given integer. For example,

am, am+1, ..., am

is a sequence where each element ak is called a term. In the above sequence, am is the initial term and
an is the final term. We may have infinite sequences. For example,

am, am+1, ...

is such an infinite sequence.

Example 1 Show that (1 + 2 + 3 + · · ·+ n) + (1 + 2 + 3 + · · ·+ n + (n + 1)) = (n + 1)2.

Example 2 Show that (1 + 2 + 3 + · · ·+ (n− 1))2 + n3 = (1 + 2 + 3 + · · ·+ n)2.

Example 3 Show that 13 + 23 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2.

Example 4 Show that 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Zeno’s paradox of motion: “Zeno explains that to reach the wastebasket, the ball must first travel
half the distance from my hand to the basket, and then from there, half the remaining distance, and so
on. Hance the ball must pass through an infinite number of locations and travel an infinite number of
distance. How can the ball do an infinite number of things in a finite amount of time? Motion, Zeno
concludes, must be an illusion.” – from Rediscovering Mathematics.

This leads to an infinite sum
1

2
+

1

4
+

1

8
+ . . . . What is its value?

Exercise 1 Using the identity
1

k(k + 1)
=

1

k
− 1

k + 1

find the value of the infinite sum 1
1∗2 + 1

2∗3 + 1
3∗4 + . . ..

Definition 1 (Factorial) For each positive integer n, the quantity n factorial denoted n!, is defined to
be the product of all the integers from 1 to n:

n! = n · (n− 1) · · · 3 · 2 · 1.

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

Definition 2 (n choose r) Let n and r be integers with 0 ≤ r ≤ n. The symbol(
n

r

)
is read “n choose r” and represents the number of subsets of size r that can be chosen from a set with
n elements.

For all integers n and r with 0 ≤ r ≤ n,(
n

r

)
=

n!

r!(n− r)!
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2 Number Systems

[Chapter 2.5, 5.1]

2.1 Decimal Representation

Power of 10 105 104 103 102 101 100

Decimal Form 100000 10000 1000 100 10 1

2.2 Binary Representation

Power of 2 210 29 28 27 26 25 24 23 22 21 20

Binary Form 1024 512 256 128 64 32 16 8 4 2 1

Example 5 Represent 1101012 in decimal notation.

1101012 = 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 32 + 16 + 4 + 1

= 5310

Example 6 Represent 3810 in binary notation.

1. Using Binary Representation table above:

3810 = 32 + 4 + 2

= 0 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

= 001001102

2. Using repeated division by 2:

38 = 19 · 2 + 0,

19 = 9 · 2 + 1,

9 = 4 · 2 + 1,

4 = 2 · 2 + 0,

2 = 1 · 2 + 0,

1 = 0 · 2 + 1.

By repeated substitution, then,

38 = 19 · 2 + 0

= (9 · 2 + 1) · 2 + 0 = 9 · 22 + 1 · 2 + 0

= (4 · 2 + 1) · 22 + 1 · 2 + 0 = 4 · 23 + 1 · 22 + 1 · 2 + 0

= (2 · 2 + 0) · 23 + 1 · 22 + 1 · 2 + 0 = 2 · 24 + 0 · 23 + 1 · 22 + 1 · 2 + 0

= (1 · 2 + 0) · 24 + 0 · 23 + 1 · 22 + 1 · 2 + 0

= 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 2 + 0

Therefore, 3810 = 1001102.
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2.3 Two’s Complements and the Computer Representation of Negative Integers

Definition 3 Given a positive integer a, the two’s complement of a relative to a fixed bit length n is
the n-bit binary representation of

2n − a.

Note that 28 − a = [(28 − 1)− a] + 1.
To find the 8-bit two’s complement of a positive integer a that is at most 255:

• Write the 8-bit binary representation for a.

• Flip the bits.

• Add 1 in binary notation.

Example 7 Find the 8-bit two’s complement of 19.

1910 = (16 + 2 + 1)10 = 000100112
flip the bits−−−−−−−−−→ 11101100

add 1−−−−→ 11101101

Example 8 Use 8-bit representations to compute 39 + (−89).
There are 3 steps:

1. Using the 8-bit representation to represent 39 and −89.

• 3910 = (32 + 4 + 2 + 1)10 = 1001112. So the 8-bit representation of 39 is 00100111.

• Since the 8-bit representation of −89 is the two’s complement of 89, we have

8910 = (64 + 16 + 8 + 1)10 = 010110012
flip the bits−−−−−−−−−→ 10100110

add 1−−−−→ 10100111.

So the 8-bit representation of −89 is 10100111.

2. Add the 8-bit representations in binary notation and truncate the 1 in the 8th position if there is
one:

0 0 1 0 0 1 1 1
+ 1 0 1 0 0 1 1 1

1 1 0 0 1 1 1 0

3. Find the decimal equivalent of the result. Since its leading bit is 1, this number is the 8-bit
representation of a negative integer.

11001110
flip the bits−−−−−−−−−→ 00110001

add 1−−−−→ 00110010↔ −(32 + 16 + 2)10 = −5010
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2.4 Hexadecimal Notation

Decimal Hexadecimal 4-Bit Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Example 9 Convert B09F16 to binary notation.

B 0 9 F
l l l l

1011 0000 1001 1111

3 Method of Proof by Mathematical Induction

Proofs by induction is the most common method of proof in Computer Science. To prove a property
P (n) defined for integers n, if the following two statements are true:

1. P (a) is true for a fixed integer a.

2. For all integers k ≥ a, if P (k) is true then P (k + 1) is true.

then the statement
for all integers n ≥ a, P (n)

is true.

Example 10 How many pieces do you get from cutting a circle with n distinct cuts? That is, every
cut has to go through every other cut exactly at one place and not at the same spot. A chart describes
the number of cuts and the pieces after the cuts is below.

cuts pieces

1 2
2 4
3 7
4 11

. . . . . .
n ?

# Tn

1 1
2 3
3 6
4 10

. . . . . .
n Tn

4
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Tn is the triangle number. So there are Tn + 1 pieces for n cuts.

Theorem 1 Pn = Tn + 1.

We will prove it by mathematical induction. Note that whenever a line is added, if there were n lines,
then there will be n + 1 new pieces. Let Pn be the number of pieces with n cuts. Then Pn = Pn−1 + n.
This is a recurrence relation. We assume that the theorem is true for a case and we have to come up
with an argument to show that the next case is true.
Proof. Base case: T1 = 1 and P1 = 2 = T1 + 1. Assume that Pn = Tn + 1. We need to prove that
Pn+1 = Tn+1 + 1.

Pn+1 = Pn + n + 1

= (Tn + 1) + n + 1

= (Tn + n + 1) + 1

= Tn+1 + 1

�

To prove a goal of the form ∀n ∈ NP (n):
First prove P (0), and then prove ∀n ∈ N(P (n) → P (n + 1)). The first of these proofs is sometimes
called the base case and the second the induction step.

Form of the Proof

Base case: [Proof of P (0) goes here.]
Induction step: [Proof of ∀n ≥ a(P (n)→ P (n + 1)]

Definition 4 (Closed Form) If a sum with a variable number of terms is shown to be equal to a
formula that does not contain either an ellipsis or a summation symbol, we say that it is written in
closed form.

Example 11 Consider the sequence 20 + 21 + · · ·+ 2n, is there any pattern w.r.t the value of the sum?
What is the closed form for this sequence?

20 = 1 =

20 + 21 = 1 + 2 =

20 + 21 + 22 = 1 + 2 + 4 =

20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 =

Theorem 2 For every natural number n, 20 + 21 + · · ·+ 2n = 2n+1 − 1.

Example 12 Once you understand why mathematical induction works, you should be able to under-
stand proofs that involve small variations on the method of induction. This example illustrates such a
variation.

In this example we’ll try to figure out which is larger, n2 or 2n. Let’s try out a few values of n:

5



Mathematical Induction CS/Math231 Discrete Mathematics Spring 2015

n n2 2n larger one

0 0 1 2n

1 1 2 2n

2 4 4 tie
3 9 8 n2

4 16 16 tie
5 25 32 2n

6 36 64 2n

Theorem 3 For every natural number n ≥ 5 , 2n > n2.

Exercise 2 Prove that for all n ≥ 10, 2n > n3.

Exercise 3 Guess the number of different ways for n people to arrange themselves in a straight line,
and prove your guess is correct by induction.

Exercise 4 Guess a formula for the sum below, and prove you are right by induction.

1 + 1(2) + 2(3) + 3(4) + · · ·+ n(n + 1)

Exercise 5 Find a formula for 30+31+32+ · · ·+3n, for n ≥ 0, and prove that your formula is correct.

Theorem 4 (Covering Board with Trominoes) For any positive integer n, a 2n × 2n square grid
with any one square removed can be covered with L-shaped tiles.

4 Strong Induction

In the induction step of a proof by mathematical induction, we prove that a natural number has some
property based on the assumption that the previous number has the same property. In some cases this
assumption isn’t strong enough to make the proof work, and we need to assume that all smaller natural
numbers have the property. This is the idea behind a variant of mathematical induction sometimes
called strong induction:

Principle of Strong Mathematical Induction
Let P (n) be a property that is defined for integers n, and let a and b be fixed integers with a ≤ b .
Suppose the following two statements are true:

1. P (a), P (a + 1), . . . , and P (b) are all true. (basis step)

2. For any integer k ≥ b, if P (i) is true for all integers i from a through k, then P (k + 1) is true.
(inductive step)

Then the statement

for all integers n ≥ a, P (n)

is true. The induction hypothesis is the supposition that P (i) is true for all integers i from a through
k is called the inductive hypothesis. That is, P (a), P (a + 1), . . . , P (k) are all true.
To prove a goal of the form ∀n ∈ NP (n):
Prove that ∀n[(∀k < nP (k))→ P (n)], where both n and k are natural numbers.
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Form of the Proof

Let n be an arbitrary natural number, assume that ∀k < nP (k), and then prove P (n).

Example 13 Prove that every integer n > 1 is either prime or a product of primes.
Proof sketch:
Goal: ∀n ∈ N[n > 1→ (n is prime ∨n is a product of primes)].
Induction hypothesis: ∀k < n[k > 1→ (k is prime ∨k is a product of primes)].
We must show that n > 1→ (n is prime ∨n is a product of primes)].
Assume n > 1, and according to our strategies for proving disjunctions, a good way to complete the
proof would be to assume that n is not prime and prove that it must be a product of primes. Because
the assumption that n is not prime means ∃a∃b(n = ab∧ a < n∧ b < n), we immediately use existential
instantiation to introduce the new variables a and b into the proof. Applying the inductive hypothesis to
a and b now leads to the desired conclusion.

Example 14 Show that if Fn is the nth Fibonacci number, then

Fn =

(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n

√
5

.

Example 15 (Well-ordering principle) Every nonempty set of natural numbers has a smallest ele-
ment.
Proof sketch:
Goal: ∀S ⊆ N[S 6= ∅→ S has a smallest element).
After letting S be an arbitrary subset of N, we’ll prove the contrapositive of the conditional statement. In
other words, we will assume that S has no smallest element and prove that S = ∅. The way induction
comes into it is that, for a set S ⊆ N, to say that S = ∅ is the same as saying that ∀S ⊆ N(n /∈ S).
We’ll prove this last statement by strong induction.

In the next example, we show how the well-ordering principle can be used in the proof.

Example 16
√

2 is irrational.
Proof. Suppose that

√
2 is rational. This means that ∃q ∈ Z+∃p ∈ Z+(p/q =

√
2), so the set

S = {q ∈ Z+ | ∃p ∈ Z+(p/q =
√

2)} is nonempty. By the well-ordering principle we let q be the
smallest element of S. Since q ∈ S, we can choose some p ∈ Z+ such that p/q =

√
2. Therefore

p2/q2 = 2, so p2 = 2q2 and therefore p2 is even. We now apply the theorem which says that for any
integer x , x is even iff x2 is even. Since p2 is even, p must be even, so we can choose some p′ ∈ Z+ such
that p = 2p′. Therefore p2 = 4p2, and substituting this into the equation p2 = 2q2 we get 4p

′2 = 2q2, so
2p

′2 = q2 and therefore q2 is even. Again, this means q must be even, so we can choose some q′ ∈ Z+

such that q = 2q′. But then 2 = p/q = (2p′)/(2q′) = p′/q′, so q′ ∈ S. Clearly q′ < q, so this contradicts
the fact that q was chosen to be the smallest element of S. Therefore,

√
2 is irrational. �

5 Recursion

5.1 Recurrence Equation

Compound Interest: Start with X dollars at 10% year. The number of dollars after the nth year equals
1.1 times the number of dollars after the previous year. That is, D(n) = 1.1D(n− 1), and D(0) = X.

This is called a recurrence equation. Formally,

7
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Definition 5 A recurrence relation for a sequence a0, a1, a2, . . . is a formula that relates each term
ak to certain of its predecessors ak1, ak2, . . . , aki, where i is an integer with ki ≥ 0. The initial con-
ditions for such a recurrence relation specify the values of a0, a1, a2, . . . , ai1, if i is a fixed integer, or
a0, a1, a2, . . . , am, where m ≥ 0 is an integer, if i depends on k.

The easiest and most common sense way to solve a recurrence equation is to use iteration (repeated
substitution):

D(n) = 1.1D(n− 1) use D(n− 1) = 1.1D(n− 2) to substitute for D(n− 1), we have

D(n) = 1.12D(n− 1) and so on...

. . .

D(n) = 1.1rD(n− r)

Let r = n, we have D(n) = 1.1nD(0) = 1.1nX.
Recursion, mathematical induction, and recurrence equations are closely related in the following

way: The algorithm uses recursion, the proof of the correctness of the algorithm uses mathematical
induction, and the analysis of the time requirements results in a recurrence equation.

Example 17 (Binary Search) Given a sorted array of n numbers and a specific number k, find out
the index of k. The running time of this algorithm, denoted by T (n), is:

5.2 The Tower of Hanoi

On the steps of the altar in the temple of Benares, for many, many years Brahmins have been moving
a tower of 64 golden disks from one pole to another; one by one, never placing a larger on top of a
smaller. When all the disks have been transferred the Tower and the Brahmins will fall, and it will be
the end of the world.

How do we solve this problem? Our plan is as follows:

• Review the solution of this problem, write the pseudocode, then play a couple of examples so that
every one understands the problem.

• Analyze the time complexity - how long the algorithm takes to run. A geometric series will show
up and we will see how to solve it in this version.

• Show a graph representation of the computation.

1. Recursive solution (Pseudocode):

Algorithm 1 Tower of Hanoi (Input: n disks, three posts From, To, Using)

ToH(n, From, To, Using)

8
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2. Analyze the time complexity:

T (0) = 0

T (n) = 2T (n− 1) + 1

= 2(2T (n− 2) + 1) + 1 = 22T (n− 2) + 2 + 1

= 22(2T (n− 3) + 1) + 2 + 1 = 23T (n− 3) + 22 + 2 + 1

= . . .

= 2rT (n− r) + 2r−1 + 2r−2 + · · ·+ 2 + 1

Let r = n, then T (n) = 2nT (0) + 2n−1 + 2n−2 + · · ·+ 2 + 1 = 2n−1 + 2n−2 + · · ·+ 2 + 1. This is a
geometric series since each successive terms is multiplied by a specific number.
2T (n) = 2n + 2n−1 + 2n−2 + · · ·+ 2. Therefore, T (n) = 2n − 1.

3. A graph representation.

• Each configuration is represented as a vertex.

• If you can move one disk from one configuration to another configuration, then there is an
edge between these two configurations.

When we have one disk with 3 pegs. There are 3 configurations. This is shown in Figure 1.

Figure 1: Tower of Hanoi - 1 disk with 3 pegs

When there are 2 disks with 3 pegs. Each configuration has 2 disks.

Figure 2: Tower of Hanoi - 2 disks with 3 pegs

What does it happen when we have 3 disks with 3 pegs?

9
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The next two examples further show how to use repeated substitution to solve recurrence equations.

Example 18 Solve the recurrence equation T (n) = 2T (
n

2
) + n where T (1) = 1.

Example 19 Solve the recurrence equation T (n) = 3T (
n

2
) + n where T (1) = 1.

5.3 Recursion and Structure Induction

Consider the following recursive definition:

• f(0) = 0

• f(n) = 1 + f(n− 2)

Is it a good definition?
In this section we discuss recursive definitions for sets and functions. We also introduce structural

induction, a version of mathematical induction that is used to prove properties of recursively defined
sets.
Recursive definition for a set

1. BASE: A statement that certain objects belong to the set.

2. RECURSION: A collection of rules indicating how to form new set objects from those already
known to be in the set.

3. RESTRICTION: A statement that no objects belong to the set other than those coming from 1
and 2.

Example 20 Use recursive definitions to define the following sets:

• The set of positive integers.

• The set of odd positive integers.

• The set of positive integer powers of 3

Recursive definition of Boolean expressions:

1. BASE: Each symbol of the alphabet is a Boolean expression.

2. RECURSION: If P and Q are Boolean expressions, then so are (P ∧Q) and (P ∨Q) and ¬P .

3. RESTRICTION: There are no Boolean expressions over the alphabet other than those obtained
from 1 and 2.

To prove that every object in a recursively defined set satisfies a given property, we use structural
introduction as follows:
Let S be a set that has been defined recursively, and consider a property that objects in S may or may
not satisfy. To prove that every object in S satisfies the property:

1. Show that each object in the BASE for S satisfies the property;

10
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2. Show that for each rule in the RECURSION, if the rule is applied to objects in S that satisfy the
property, then the objects defined by the rule also satisfy the property.

Because no objects other than those obtained through the BASE and RECURSION conditions are
contained in S, it must be the case that every object in S satisfies the property.

Example 21 Show that F (n) < 2n where F (n) is the nth Fibonacci number using mathematical induc-
tion, strong induction and structural induction. The recursive definition of Fibonacci number is

• Base: F (1) = 1 and F (2) = 1

• Recursion: F (n) = F (n− 1) + F (n− 2)

Example 22 Parenthesized Expressions

1. A sequence of n+1 matrices A1A2 . . . An+1 can be multiplied together in many different ways
dependent on the way n pairs of parentheses are inserted. For example for n+1 = 3, there are two
ways to insert the parentheses: ((A1A2 )A3 ) and (A1 (A2A3 )). Write a recurrence equation for
the number of ways to insert k pairs of parenthesis. Do not solve it. (Hint: Concentrate on where
the last multiplication occurs).

2. Write a list of the different ways to parenthesize a sequence of n+1 matrices for n+1=2,3,4.

3. A balanced arrangement of parenthesis is defined inductively as follows:

The empty string is a balanced arrangement of parentheses. If x is balanced arrangement of
parentheses then so is (x). If u and v are each a balanced arrangement of parentheses, then so is
uv.

Write a list of strings that represent a balanced arrangement of n parentheses for n=1,2,3.

4. Describe a 1-1 correspondence between the strings that are balanced arrangements of n pairs of
parentheses, and the number of ways to multiply a sequence of n+1 matrices.

6 Triangulation

An art gallery has several rooms. For security reasons, each room is guarded by cameras that see in all
directions. How can we have as few cameras as possible to cover the whole gallery (see Figure 3)?

A polygon is a closed geometric figure consisting of a sequence of line segments s1, s2, . . . , sn, called
sides.Each pair of consecutive sides,si and si+1, for i = 1, 2, . . . , n − 1, as well as the last side sn and
the first side s1, of the polygon meet at a common endpoint, called a vertex.

• A polygon is called simple if no two nonconsecutive sides intersect.

• Every simple polygon divides the plane into two regions: its interior, consisting of the points
inside the curve, and its exterior, consisting of the points outside the curve.

• A polygon is called convex if every line segment connecting two points in the interior of the
polygon lies entirely inside the polygon.

• A polygon that is not convex is said to be nonconvex. In Figure 4, polygons (a) and (b) are
convex, but polygons (c) and (d) are not.

11
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Figure 3: An Art Galley with Cameras

• A diagonal of a simple polygon is a line segment connecting two nonconsecutive vertices of the
polygon, and a diagonal is called an interior diagonal if it lies entirely inside the polygon, except
for its endpoints.

Figure 4: Convex and Nonconvex Polygons.

A triangulation of a simple polygon P is the decomposition of P into triangles by a maximal
set of non-intersecting diagonals. Figure 5 shows a polygon and one triangulataion of this polygon.

Lemma 1 Every simple polygon with at least four sides has an interior diagonal.

Theorem 5 A simple polygon with n sides, where n is an integer with n ≥ 3, can be triangulated into
n− 2 triangles.

Proof. We will prove this result using strong induction. Let T (n) be the statement that every simple
polygon with n sides can be triangulated into n− 2 triangles.

Base case: T (3) is true because a simple polygon with three sides is a triangle. We do not need to add
any diagonals to triangulate a triangle; it is already triangulated into one triangle, itself. Consequently,
every simple polygon with n = 3 has can be triangulated into n− 2 = 3− 2 = 1 triangle.

Induction step: Assume that T (j) is true for all integers j with 3 ≤ j ≤ k. That is, we assume that
we can triangulate a simple polygon with j sides into j − 2 triangles whenever 3 ≤ j ≤ k. Now suppose
that we have a simple polygon P with k + 1 sides. Because k + 1 ≥ 4, by Lemma 1, P has an interior

12
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Figure 5: A Polygon and a Triangulation.

Figure 6: Existence of a Diagonal.

diagonal ab. Now, ab splits P into two simple polygons Q, with s sides, and R, with t sides. The sides
of Q and R are the sides of P , together with the side ab, which is a side of both Q and R. Note that
3 ≤ s ≤ k and 3 ≤ t ≤ k because both Q and R have at least one fewer side than P does (after all,
each of these is formed from P by deleting at least two sides and replacing these sides by the diagonal
ab). Furthermore, the number of sides of P is two less than the sum of the numbers of sides of Q and
the number of sides of R, because each side of P is a side of either Q or of R, but not both, and the
diagonal ab is a side of both Q and R, but not P . That is, k + 1 = s + t− 2.

We now use the inductive hypothesis. Because both 3 ≤ s ≤ k and 3 ≤ t ≤ k, by the inductive
hypothesis we can triangulate Q and R into s − 2 and t − 2 triangles, respectively. Next, note that
these triangulations together produce a triangulation of P . (Each diagonal added to triangulate one
of these smaller polygons is also a diagonal of P .) Consequently, we can triangulate P in to a total of
(s− 2) + (t− 2) = s + t− 4 = (k + 1)− 2 triangles.This completes the proof by strong induction. That
is, we have shown that every simple polygon with n sides, where n ≥ 3, can be triangulated into n− 2
triangles. �

13
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7 Josephus Problem

There are people standing in a circle waiting to be executed. The counting out begins at some point in
the circle and proceeds around the circle in a fixed direction. In each step, a certain number of people
are skipped and the next person is executed. The elimination proceeds around the circle (which is
becoming smaller and smaller as the executed people are removed), until only the last person remains,
who is given freedom.

The task is to choose the place in the initial circle so that you are the last one remaining and so
survive. In the following, n denotes the number of people in the initial circle and the people in the circle
are numbered from 1 to n.

1. Experiment with smaller numbers and come up the recursive equations:

Consider the problem in terms of a smaller problem and see how you can find the solution for the
current problem based on the smaller problem.

Observation: Consider a number of people that is the double of another number. After finishing
a cycle, half of the people are gone and the problem now is similar as the original problem, except
that people are renumbered.

Draw a graph and see what is the solutions to the problem when there are 3 people and 6 people,
or 7 people and 14 people. Find out the relationship between the results.

• J(3) = 1 and J(6) = 5

• J(7) = 7 and J(14) = 13

Recursive equations:

• J(2n) = 2J(n)− 1

• J(2n + 1) = 2J(n) + 1

2. From base cases to a general formula:
We would like to have a formula that solves the problem with n people given n as the parameter.

n J(n)

1 1

2 1
3 3

4 1
5 3
6 5
7 7

8 1
9 3

10 5
11 7
12 9
13 11
14 13
15 15

14
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Note that the solutions repeat. When do they start to repeat? How do they repeat? What would
be the formula that specifies the relation between n and J(n)?

Theorem 6 J(2m + p) = 2p + 1 where 2m is the biggest power of 2 that n has and p < 2m.

3. Binary representation of the problem:
For the same problem, let’s write out the binary values of n and J(n). Do you see any patterns
here? Can you derive J(n) from n?

n J(n)

1 1

10 1
11 11

100 1
101 11
110 101
111 111

1000 1
1001 11
1010 101
1011 111
1100 1001
1101 1011
1110 1101
1111 1111

Exercise 6 Write a recurrence relation to compute the number of binary strings with n digits that do
not have two consecutive 1’s. Solve the recurrence, and determine what percentage of 8-bit binary strings
do not contain two consecutive 1’s.
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