- 1. Prove that if m is an even integer, then m+7 is odd. Do this proof in three ways: direct proof, proof by contraposition and proof by contradition.
 - (a) Direct Proof: Assume that m is an even integer. Then $\exists k \in \mathbb{Z}$ such that m=2k. Then $m+7=2k+7=2k+6+1=2k+2\times 3+1=2(k+3)+1$. Since k and 3 are integers, k+3 is an integer, so 2(k+3) is an even integer. Hence m+7=2(k+3)+1 is an odd integer.
 - (b) Proof by Contraposition: We will prove that if m+7 is an even integer, then m is an odd integer. Proof: If m+7 is even, then $\exists k \in \mathbb{Z}$ such that m+7=2k. Thus $m=2k-7=2k-2\times 3-1=2(k-3)-1$. Since k and 3 are integers, k-3 is an integer, so 2(k-3) is an even integer. Hence m=2(k-3)-1 is an odd integer. \blacksquare
 - (c) Proof by Contradiction: Assume $\exists m \in \mathbb{Z}$ such that m is even and m+7 is even. Then $\exists k, j \in \mathbb{Z}$ such that m=2k and m+7=2j. Thus m=2k and m=2j-7, so that 2k=2j-7, or 2(k-j)=-7. Since k and j are integers, k-j is an integer, thus -7 is an even integer, a contradiction. Thus the assumption is false, and the original statement is true.
- 2. Using proof by contradiction, prove that $\forall n \in \mathbb{Z}, 4 \nmid (n^2 + 2)$ Suppose that $\exists n \in \mathbb{Z}, 4 | (n^2 + 2)$. By definition of divisibility, $\exists k \in \mathbb{Z}$, such that $4k = n^2 + 2$. Rewrite as $n^2 = 4k - 2 = 2(k - 1)$, which indicates that n^2 is even and thus n is even. By definition of even numbers, $\exists q \in \mathbb{Z}$, such that $n^2 = (2q)^2 = 4q^2$. $n^2 = 4q^2$ indicates that n^2 is divisible by 4. Previously, we assumed $n^2 + 2$ is also divisible by 4. n^2 and $n^2 + 2$ can not both be divisible by 4, hence contradiction.
- 3. Using induction, prove that for all integers $n \ge 1, 2^{2n} 1$ is divisible by 3, i.e. $3|2^{2n} 1$ Base case: n = 1: $2^{2 \times 1} 1 = 3$ and 3|3. Inductive hypothesis: assume $3|2^{2k} 1 \implies 2^{2k} 1 = 3q, q \in \mathbb{Z}$ Prove for k + 1:

$$\begin{array}{rcl} 2^{2(k+1)}-1 & = & 2^{2k+2}-1 \\ & = & 2^{2k}\times 4-1 \\ & = & 2^{2k}\times 3+2^{2k}-1 \\ & = & 2^{2k}\times 3+3q \\ & = & (2^{2k}+q)\times 3 \end{array}$$

 $q \in \mathbb{Z}$ and $2^{2k} \in \mathbb{Z}$, thus $3|2^{2(k+1)} - 1$.

- 4. Given sets A, B, and C in the same universe, determine if each of the following statements is true or false. If it is true, then prove it. If it is false, then give a counter example.
 - (a) $C \subseteq A \land C \subseteq B \to C \subseteq A \cup B$ Proof: Let $x \in C$. Since $C \subseteq A$ and $C \subseteq B$, $x \in A$ and $x \in B$. Thus by definition, $x \in A \cap B$.
 - (b) $C \subseteq A \cup B \to C \subseteq A \land C \subseteq B$ This is false. A counter example is given for example by $A = \{1, 2\}, B = \{3, 4\}$ and $C = \{2, 3\}$.
 - (c) $A^c \cap (A \cup B) = B \setminus A$. Algbraic proof: $A^c \cap (A \cup B) = (A^c \cap A) \cup (A^c \cap B) = \emptyset \cup (A^c \cap B) = A^c \cap B = B \setminus A$. \blacksquare Alternatively: show that $A^c \cap (A \cup B) \subseteq A \setminus B$ and $A \setminus B \subseteq A^c \cap (A \cup B)$ $A^c \cap (A \cup B) \subseteq A \setminus B$: Let x be an arbitrary element in $A^c \cap (A \cup B)$, by definition, $x \in A^c$ and $x \in (A \cup B)$, which is equivalent to $x \notin A$ and $(x \in A \text{ or } x \in B)$, and it follows that $x \notin A$ and $x \in B$, which is by definition $x \in B \setminus A$

 $A \setminus B \subseteq A^c \cap (A \cup B)$: Let x be an arbitrary element in $A \setminus B$. by definition, $x \in B$ and $x \notin A$. $x \in B \to x \in (A \cup B)$ and $x \notin A \to x \in A^c$. Thus $x \in (A \cup B)$ and $x \in A^c$, by definition, $x \in A^c \cap (A \cup B)$.

5. Prove that give a set S, the cardinality of its power set is $2^{|S|}$.

Do an induction on |S|.

Base case: |S| = 0, which means S is the empty set. The power set of the empty set contains one element, the empty set itself. Thus $|P(\varnothing)| = 1 = 2^0 = 2^{|\varnothing|}$.

Inductive hypothesis: |S| = k, and $|P(S)| = 2^k$

Prove for |S| = k + 1:

For the first k elements in S, we construct their power set, say $P(S_k)$, which by the inductive hypothesis, has 2^k elements. All these elements must be in the power set of P(S). The rest of the power set consist of all possible subsets that contain the (k+1)-th element, and we form these subsets by adding the (k+1)-th element to every set found in $P(S_k)$. And there are 2^k of these subsets. Therefore $|P(S)| = 2^k + 2^k = 2^{k+1}$.

6. Prove that if $a_1, a_2, ..., a_n$ are n distinct real numbers, exactly n-1 multiplications are needed to compute the product of these n numbers, no matter how parentheses are inserted into their product. Proof by strong induction:

Base case: n = 1: The product a_1 requires 1 - 1 = 0 multiplication.

Inductive hypothesis: assume that $a_1 \times a_2 \times \ldots \times a_k$ require k-1 multiplications, $\forall k, 1 \leq k \leq n$. Inductive step: Consider the last multiplication (any last multiplication no matter how the parentheses are inserted) used to compute the product of $a_1 \times a_2 \times \ldots \times a_{n+1}$. It must be the product of k of these numbers and k and

7. For each of the following, give a recursive definition. Remember to indicate the initial terms or base:

(a)
$$a_n = \sum_{i=0}^n i$$

 $a_0 = 0, a_k = a_{k-1} + k$

- (b) The sequence that generates the terms 3, 6, 12, 24, 48, 96, 192, ... $a_0=3,\,a_k=2a_{k-1}$
- (c) The set of non-negative even numbers $0 \in S$, $x \in S \to x + 2 \in S$, nothing else is in S.
- (d) The set of all even numbers $0 \in S, x \in S \to x + 2 \in S \land x \in S \to x 2 \in S$, nothing else is in S.
- 8. Find explicit formulae for the following recursively defined sequences, and prove correctness using induction.
 - (a) $a_k = k a_{k-1}, \forall k \ge 1, a_0 = 0.$

$$\begin{array}{rcl} a_0 & = & 0 \\ a_1 & = & 1 - a_0 = 1 - 0 = 1 \\ a_2 & = & 2 - a_1 = 2 - 1 = 1 \\ a_3 & = & 3 - a_2 = 3 - 1 = 2 \\ a_4 & = & 4 - a_3 = 4 - 2 = 2 \\ a_5 & = & 5 - a_4 = 5 - 2 = 3 \\ a_6 & = & 6 - a_5 = 6 - 3 = 3 \end{array}$$

Guess: $a_k = \lceil \frac{k}{2} \rceil$

Proof by strong induction:

Base case: $a_0 = 0 = \left\lceil \frac{0}{2} \right\rceil$

Inductive hypothesis: $a_i = \lceil \frac{i}{2} \rceil, \forall i, 0 \le i \le k$

Inductive step:

$$\begin{aligned} a_{k+1} &= k+1-a_k & \text{by definition} \\ &= k+1-\left\lceil\frac{k}{2}\right\rceil & \text{by inductive hypothesis} \\ &= \left\{ \begin{array}{ll} k+1-\frac{k+1}{2} & \text{if } k+1 \text{ is even } (k \text{ is odd}) \\ k+1-\frac{k}{2} & \text{if } k+1 \text{ is odd } (k \text{ is even}) \end{array} \right. & \text{by definition of ceiling} \\ &= \left\{ \begin{array}{ll} \frac{2(k+1)-(k+1)}{2} & \text{if } k+1 \text{ is even} \\ \frac{2(k+1)-k}{2} & \text{if } k+1 \text{ is odd} \end{array} \right. & \\ &= \left\{ \begin{array}{ll} \frac{k+1}{2} & \text{if } k+1 \text{ is even} \\ \frac{k+2}{2} & \text{if } k+1 \text{ is odd} \end{array} \right. & \\ &= \left\lceil \frac{k+1}{2} \right\rceil & \text{by definition of ceiling} \end{aligned}$$

(b)
$$a_k = 2a_{k-2}, \forall k \ge 2, a_0 = 1, a_1 = 2.$$

$$a_0 = 1 = 2^0$$

$$a_1 = 2 = 2^1$$

$$a_2 = 2a_0 = 2 \times 2^1 = 2^1$$

$$a_3 = 2a_1 = 2 \times 2^1 = 2^2$$

$$a_4 = 2a_2 = 2 \times 2^1 = 2^2$$

$$a_5 = 2a_3 = 2 \times 2^2 = 2^3$$

$$a_6 = 2a_4 = 2 \times 2^2 = 2^3$$

Guess: $a_k = 2^{\lceil \frac{k}{2} \rceil}$

Proof by strong induction:

Base case: $a_0=1=2^0=2^{\lceil\frac{0}{2}\rceil}$ and $a_1=2=2^1=2^{\lceil\frac{1}{2}\rceil}$ Inductive hypothesis: $a_i=2^{\lceil\frac{i}{2}\rceil},\,\forall i,0\leq i\leq k$

Inductive step:

$$a_{k+1} = 2a_{k-1}$$
 by definition
$$= 2 \times 2^{\left\lceil \frac{k-1}{2} \right\rceil}$$
 by inductive hypothesis
$$= \begin{cases} 2 \times 2^{\frac{k-1}{2}} & \text{if } k-1 \text{ is even} \\ 2 \times 2^{\frac{k-1}{2}} & \text{if } k-1 \text{ is odd} \end{cases}$$
 by definition of ceiling
$$= \begin{cases} 2^{\frac{k-1}{2}+1} & \text{if } k-1 \text{ is even} \\ 2^{\frac{k}{2}+1} & \text{if } k-1 \text{ is odd} \end{cases}$$

$$= \begin{cases} 2^{\frac{k+1}{2}} & \text{if } k-1 \text{ is even} \\ 2^{\frac{k+2}{2}} & \text{if } k-1 \text{ is odd} \end{cases}$$

$$= \begin{cases} 2^{\frac{k+1}{2}} & \text{if } k-1 \text{ is even} \\ 2^{\frac{k+2}{2}} & \text{if } k+1 \text{ is even} \\ 2^{\frac{k+2}{2}} & \text{if } k+1 \text{ is odd} \end{cases}$$

$$= 2^{\left\lceil \frac{k+1}{2} \right\rceil}$$
 by definition of ceiling

9. Prove the correctness of the following algorithm:

[Pre-condition: i=1 and sum=0]
while(i<=100)
 sum := sum + i
 i := i + 1
end while
[Post-condition: sum = 1 + 2 + ... + 100]</pre>

State your loop invariant clearly.

Loop invariant: I(n): i = n + 1 and sum = 1 + ... + n

(a) Base case:

$$I(0): n=0 \Rightarrow \left\{ \begin{array}{ll} i=0+1=1 & \text{by the loop invariant} \\ sum=0 & \text{no addition performed, } 0<1 \end{array} \right.$$

which matches the pre-condition

(b) Inductive: Assume that before an arbitrary iteration $k+1,\ I(k)$ is true, i.e. i=k+1 and $sum=1+\ldots+k$

loop iteration execution:

```
\label{eq:sum:sum:sum} \begin{split} \text{sum} &:= \text{sum} + \text{i} \Rightarrow sum = 1 + \ldots + k + (k+1) \\ \text{i} &:= \text{i} + 1 \Rightarrow i = k+2 \end{split}
```

Thus I(k+1) is true after one loop iteration

- (c) Eventual falsity of guard: i starts at 1 and is incremented at each iteration until ≤ 100 is violated, which is at I(100).
- (d) Correctness of post-condition: I(100): i=101 and sum=1+...+100, which matches the post-condition.
- 10. Given the following recursive definition of a set S:

• Basis: $\lambda \in S$

• Recursive: $x \in S \to axa \in S$

Prove using structural induction, that $\forall s \in S, |s|$ is even.

Base case: $|\lambda| = 0$, 0 is even.

Inductive hypothesis: assume all strings of length n in S have even length, thus n is even.

Recursive step:

We construct s = axa, by the recursive definition, where |x| = n. Thus |s| = 1 + |x| + 1 = n + 2. By the inductive hypothesis, n is even, n + 2 is also even, thus |s| is even.