1. Determine whether each of the following is a **statement**, a **predicate**, or neither. If possible, determine whether each of the **statements** is True or False.

(a)
$$\sqrt{2} > 1$$

- (b) $\sin^2 x + \cos^2 x = 1$
- (c) When is the square of a number greater than one?
- (d) Get some rest.
- (e) a is an even number.
- (f) $\forall x \in \mathbf{R}, (x^2 > 3 \rightarrow x > 1)$
- 2. Give the converse, inverse, contrapositive, and (non-trivial!) negation of the following statements.

(a) $\sim p \rightarrow r$

3. Find an equivalent statement that contains only \lor or \land :

$$\sim ((p \lor q) \to (p \land q))$$

- 4. Convert the following binary number to hexadecimal (base-16): 1101001110011010
- 5. Convert the following base-5 number to decimal: 1234
- 6. For the following table,
 - (a) construct a Boolean expression having the table as its truth table
 - (b) design a circuit having the table as its input/output table

Р	Q	R	S
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

- 7. Rewrite the following statements formally (using quantifiers and variables):
 - (a) Some integers are not necessarily the product of two prime numbers.
- 8. Write the non-trivial **negation** of the following statements:
 - (a) There exist a real number x such that for all real numbers y, xy > y.
 - (b) $\forall n \in \mathbf{Z}, (n \text{ even} \rightarrow n+1 \text{ odd}).$