Math/CS 231

Exam 2

1. Short Answers

(a) What is gcd(120, 35)? Show the steps of the gcd algorithm application.

 $\begin{array}{rcl} 120 = 35 * 3 + 15 & \Rightarrow & gcd(120,35) = gcd(35,15) \\ 35 = 15 * 2 + 5 & \Rightarrow & gcd(35,15) = gcd(15,5) \\ 15 = 5 * 3 + 0 & \Rightarrow & gcd(15,5) = gcd(5,0) \\ & & gcd(120,35) = gcd(5,0) = 5 \end{array}$

- (b) What is the difference between ordinary and strong mathematical induction? Ordinary mathematical induction proves a single base case of P(a) is true. The inductive hypothesis assumes P(k) (k ≥ a) is true and then proves P(k+1) is also true. Strong mathematical induction proves possibly mutiple base cases P(a), P(a+1), ..., P(b) are true. The inductive hypothesis assumes that P(i) is true ∀i, b < i ≤ k, then proves P(k+1) is also true.</p>
- (c) Write the negation of the statement $\exists x \in U(x \in A \cap B \to x \notin C)$. $\forall x \in U, x \in A \cap B \land x \in C$
- (d) State the Well Ordering Principle for integers. Given a non-empty set S of integers, all of which are greater than some fixed integer, S has a least element.
- 2. Let $A = \{a, b, c, d, e\}, B = \{1, 2, a, 3, c\}$ and $C = \{2, b, a, 1\}$. Find each of the following:
 - (a) $A \setminus C$ $A \setminus C = \{c, d, e\}$ (b) $A \cap (B \cup C)$
 - $A \cap (B \cup C) = A \cap \{1, 2, a, 3, c, b\} = \{a, b, c\}$

(c) $(A \cap B) \times (A \cap C)$ (Cartesian product) $(A \cap B) \times (A \cap C) = \{a, c\} \times \{a, b\} = \{(a, a), (a, b), (c, a), (c, b)\}$

3. Given any two arbitrary sets A and B, show that $A^c \cap (A \cup B) = B \setminus A$. Algbraic proof: $A^c \cap (A \cup B) = (A^c \cap A) \cup (A^c \cap B) = \emptyset \cup (A^c \cap B) = A^c \cap B = B \setminus A$. Alternatively: show that $A^c \cap (A \cup B) \subseteq A \setminus B$ and $A \setminus B \subseteq A^c \cap (A \cup B)$ $A^c \cap (A \cup B) \subseteq A \setminus B$: Let x be an arbitrary element in $A^c \cap (A \cup B)$, by definition, $x \in A^c$ and $x \in (A \cup B)$, which is equivalent to $x \notin A$ and $(x \in A \text{ or } x \in B)$, and it follows that $x \notin A$ and $x \in B$, which is by definition $x \in B \setminus A$

 $A \setminus B \subseteq A^c \cap (A \cup B)$: Let x be an arbitrary element in $A \setminus B$. by definition, $x \in B$ and $x \notin A$. $x \in B \to x \in (A \cup B)$ and $x \notin A \to x \in A^c$. Thus $x \in (A \cup B)$ and $x \in A^c$, by definition, $x \in A^c \cap (A \cup B)$.

4. Prove that if n is an integer and 3n + 1 is odd, then n is even. You need to do this proof in two ways (out of three): direct proof, proof by contrapositive, or proof by contradiction. Each proof is worth the same amount.

Proof Method 1 (circle one): Direct proof Proof by contrapositive) Proof by contradiction Direct proof: Let n be an integer, and assume 3n + 1 is odd. Then there exists an integer j such that 3n + 1 = 2j + 1. Thus 3n = 2j, so that 3n is even. But then n is even, for if n were odd, then 3n would be odd.

Proof by contrapositive: Assume that n is odd. Then there exists an integer j such that n = 2j + 1. Then 3n + 1 = 3(2j + 1) + 1 = 6j + 4 = 2(3j + 2), so 3n + 1 is even.

Proof by contradiction: Assume the statement is false. Then there exists an integer n such that 3n + 1 is odd and n is odd. Then n = 2j + 1 for some integer j, so 3n + 1 = 2(3j + 2), so that 3n + 1 is even. But 3n + 1 is odd, a contradiction. Therefore the original statement is true.

5. Using induction, prove that for all integers $n \ge 1$,

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$$

For $n = 1, 1 \cdot 2 = 1(2)(3)/3 = 2$, so P(1) is true.

Assume that P(k) is true for $k \ge 1$. Then $1 \cdot 2 + 2 \cdot 3 + \dots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + \frac{3(k+1)(k+2)}{3} = \frac{(k+1)(k+2)(k+3)}{3}$, so P(k+1) is true. The statement is true for all $n \ge 1$ by mathematical induction.

- 6. Do ONE of the following two problems ((a) OR (b)):
 - (a) Prove the correctness of the following algorithm:

```
[Pre-condition: i=1 and sum=0]
while(i<=100)
sum := sum + i</pre>
```

i := i + 1 end while [Post-condition: sum = 1+ 2 + ... + 100]

Loop invariant: I(n): i = n and sum = 1 + ... + n

There is a typo in the loop invariant, it should be: I(n): i = n+1 and sum = 1 + ... + n

- i. Base case: I(0): i=1, since n=0, sum=0, which matches the pre-condition
- ii. Inductive: Assume that before an arbitrary iteration k, I(k-1) is true, i.e. i = k and sum = 1 + ... + k-1loop iteration execution: sum := sum + i \Rightarrow sum = 1 + ... + (k-1) + k $i := i + 1 \Rightarrow i = k+1$ Thus I(k) is true after one loop iteration
- iii. Eventual falsity of guard: i starts at 1 and is incremented at each iteration until ≤ 100 is violated, which is at I(100).
- iv. Correctness of post-condition: I(100): i = 101 and sum = $1 + \dots + 100$, which matches the post-condition.
- (b) Prove by induction that for all integers $n \ge 4$,

$$2n+3 \le 2^n.$$

For $n = 4, 2 \cdot 4 + 3 = 11 \leq 2^4 = 16$, so P(4) is true. Assume P(k) is true for $k \geq 4$, so that $2k + 3 \leq 2^k$. Then $2(k + 1) + 3 = 2k + 2 + 3 = 2k + 3 + 2 \leq 2^k + 2 \leq 2^k + 2^k = 2^{k+1}$, so that P(k+1) is true. Therefore the statement is true for all $n \geq 4$.