Math/CS 231

1. Prove that if m is an even integer, then m + 7 is an odd integer. You need to do this proof in **two** ways (out of three): direct proof, proof by contrapositive, or proof by contradiction. Each proof is worth the same amount.

Proof Method 1 Direct proof

Proof. Assume that m is an even integer. Then there exists an integer k such that m = 2k. Then $m + 7 = 2k + 7 = 2k + 6 + 1 = 2k + 2 \cdot 3 + 1 = 2(k + 3) + 1$. Since k and 3 are integers, k + 3 is an integer, so 2(k + 3) is an even integer. Hence m + 7 = 2(k + 3) + 1 is an odd integer.

Proof Method 2 Proof by contrapositive

We will prove that if m + 7 is an even integer, then m is an odd integer.

Proof. If m + 7 is even, then there exists an integer k such that m + 7 = 2k. Thus $m = 2k - 7 = 2k - 2 \cdot 3 - 1 = 2(k - 3) - 1$. Since k and 3 are integers, k - 3 is an integer, so 2(k - 3) is an even integer. Hence m = 2(k - 3) - 1 is an odd integer.

Proof Method 3 Proof by contradiction

Proof. Assume there exists an integer m such that m is even and m + 7 is even. Then there exist integers k and j such that m = 2k and m + 7 = 2j. Thus m = 2k and m = 2j - 7, so that 2k = 2j - 7, or 2(k - j) = -7. Since k and j are integers, k - j is an integer, thus -7 is an even integer. However, $-7 = 2 \cdot (-3) - 1$, so -7 s an odd integer, a contradiction. Thus the assumption is false, and the original statement is true.

2. Using induction, prove that for all integers $n \ge 1$, $2^{2n} - 1$ is divisible by 3; i.e. $3 | 2^{2n} - 1$.

Base case: n = 1 $2^{2*1} - 1 = 3$, and $3 \mid 3$. Inductive hypothesis: assume n = k is true $3 \mid 2^{2k} - 1 \Longrightarrow 2^{2k} - 1 = 3 * r, r \in \mathbb{Z}$. Prove for n = k+1: $2^{2(k+1)} - 1 = 2^{2k+2} - 1$ $= 2^{2k} * 4 - 1$ $= 2^{2k} * 3 + 2^{2k} - 1$ $= 2^{2k} * 3 + 3 * r (inductive hypothesis)$ $= (2^{2k} + r) * 3$

 $r \in \mathbb{Z}$, and $2^{2k} \in \mathbb{Z} \Longrightarrow (2^{2k} + r) \in \mathbb{Z}$, thus $3 \mid 2^{2(k+1)} - 1$

- 3. Given sets A, B, and C in the same universe, determine if each of the following statements is true or false. If it is true, then prove it. If it is false, then give a counter example.
 - (a) $C \subseteq A$ and $C \subseteq B \to C \subseteq A \cup B$ **Proof.** Let $x \in C$. Then since $C \subseteq A$ and $C \subseteq B$, $x \in A$ and $x \in B$, so that $x \in A \cap B$. Thus $x \in A \cup B$. The statement is True.

(b) $C \subseteq A \cup B \rightarrow C \subseteq A$ and $C \subseteq B$

The statement is False. A counterexample is given by $A = \{1, 2\}, B = \{3, 4\}$, and $C = \{2, 3\}$.