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Chapter 1 The Logic of Compound Statements

1.1 Logical Form and Logical Equivalence

A (or ) is a sentence that is true or false but not

both.

Symbols:

e The symbol ~ denotes not
e The symbol A denotes and
e The symbol v denotes or

Given a statement p the negation of p is ~p

Given the statements p and q the conjunction of p and q is pAg

Given the statements p and q the disjunction of p and q is pvq

In expressions that include the symbol ~ as well as A or v, ~ is preformed first
unless there are parentheses which always come first

Truth values - either true or false

If p is a statement variable, the of p is “not p” or “it is not the
case that p” and is denoted ~p. It has opposite truth value from p: if p is true, ~p is
false; if p is false, ~p is true.

If p and q are statement variables, the of p and q is “p and
g,” denoted pAg. It is true when, and only when, both p and q are true. If either p or q
is false, or if both are false, pAq is false

If p and g are statement variables, the of pand q is “p or q”
denoted pvq. It is true when either p is true or q is true, or both p and q are true; it is
false only when both p and q are false




A (or ) is an expression made up
statement variables (such as p, g, and r) and logical connectives (such as ~, A, and V)
that becomes a statement when actual statement are substituted for the component
statement variables. The for a given statement from displays the truth
values that correspond to all possible combinations of truth values for its
component statement variables.

Two statements are called if, and only if, they have
identical truth values for each possible substitution of statements for the statement
variables. The logical equivalence of statement forms P and Q is denoted by writing
P=(Q. Two statements are called if, and only if, they have
logically equivalent forms when identical component statement variables are used
to replace identical component statements.

e Construct a truth table with one column for the truth values of P and another
column for the truth values of Q
e Check each combination of truth values of the statement variables to see
whether the truth value of P is the same as the truth value of Q
o Ifin each row the truth value of P is the same as the truth value of Q,
then P and Q are logically equivalent
o Ifin some row P has a different truth value from Q, then P and Q are
not logically equivalent

e The negation of an and statement is logically equivalent to the or statement
in which each component is negated.

e The negation of an or statement is logically equivalent to the and statement
in which each component is negated

A is a statement form that is always true regardless of the
truth values of the individual statements substituted for its statement variables. A
statement whose form is a tautology is a LA
is a statement form that is always false regardless of the truth values of the
individual statements substituted for its statement variables. A isa
statement form that is always false regardless of the truth values of the individual
statements substituted for its statement variables. A statement whose form is a
contradiction is a




Given any statement variables p,
q, and r, a tautology t and a contradiction c, the following logical
equivalences hold

Commutative laws PAQ=qAD pVvg=qvp
Associative laws (pAg)Ar=pA(gqAar) (pvq)vr=pv(qvr)
Distributive laws pA(qvr)=(paq)v(par) | pv(gar)=(pvg)A(pvr)
Identity law pAt=p pVCe=p

Negation laws pv~p=t pA~Dp=C

Double negative law | ~(~p)

Idempotent laws DPAD=D DPVp=p

Universal bound pvt=t DPAC=C

laws

DeMorgan’s Laws ~(pAq)=~pv~q ~(pvq)=~pA~q
Absorption laws pv(pAq)=p pA(pvq)=p
Negation of t and c ~t=c ~t=c

1.2 Conditional Statements

If p and g are statement variables, the of g and p is “If p then
q” or “p implies q” and is denoted p—q. it is false when p is true and q is false;
otherwise it is true. We call p the (or ) of the conditional and
q the (or )
A statement that is true by virtue of the fact that its hypothesis is false is vacuously
true or
° ~

Use truth tables to show logical equivalence of statements for —

The negation of “if p then q” is logically equivalent to “p and not g” which can be
restated as ~(p—>q)=pr~q

The of a conditional statement of the form “if p then q”is
If ~q then ~p
Symbolically,
The contrapositive of p—q is ~q—>~p

A conditional statement is logically equivalent to its contrapositive



Suppose a conditional statement of the form “If p then q” is given.
The is “If g the p”
The is “If ~p then ~q

Symbolically,
The converse of p—q is g—p
The inverse of p—q is ~p—>~q

If p and g are statements,

p g means “ if not g then not p”
Or, equivalently,
“if p then q”
Given statement variables p and g, the of pand q is “p if,

and only if ¢” and is denoted p<>q. it is true if both p and q have the same truth
values and is false if p and g have opposite truth values. The words if and only if are
sometimes abbreviated

If rand s are statements:
risa for s means “if r then s”
risa for s means “if not r then not s”

ris a necessary condition for s also means “if s then r”
ris a necessary and sufficient condition for s means “r if, and only if, s”

In logic, a hypothesis and conclusion are not required to have related subject
matters
In informal language, simple conditionals are often used to mean biconditionals




1.3 Valid and Invalid Arguments

An is a sequence of statements, and an isa
sequence or statement forms. All statements in an argument and all statement forms
in an argument form, except for the final one, are called (or
or ). The final statement or statement form is called the .The
symbol, .., which is read “therefore,” is normally placed just before the conclusion.
To say that an argument form is means that no matter what particular
statements are substituted for the statement variables in its premises, if the
resulting premises are all true, then the conclusion is also true. To say that an
argument is means that its form is valid.

e Identify the premises and conclusion of the argument form

e Construct a truth table showing the truth values of all the premises and the
conclusion

e Ifthe truth table contains a row in which all the premises are true and the
conclusion is false, then it is possible for and argument of the given form to
have true premises and a false conclusion, and so the argument form is
invalid. Otherwise, in every case where all the premises are true, the
conclusion is also true, and so the argument form is valid.

An argument form consisting of two premises and a conclusion is called a syllogism.
The first and second premises are called the major and minor premises,
respectively.

If p then g
p
o.q

If p then g
~p
so~q

is a form of argument that is valid.

A is an error in reasoning that results in an invalid argument

Using ambiguous premises and treating them as if they were unambiguous
Begging the question - assuming what is to be proved without having derived it
from the premises

Jumping to a conclusion (without adequate grounds)

Converse error - the converse of a statement is not logically equivalent to the
statement




Inverse error - the inverse of a statement is not logically equivalent to the statement

Contradictions and Valid Arguments
Contradiction rule - If you can show that the supposition that statement p is false
leads logically to a contradiction, then you can conclude that p is true.

10

Summary of Rules of Inference

Valid Argument Forms
Modus Pones p—q Elimination pvq pvq
p ~q ~p
~.q ) ~.q
Modus Tollens | p—q Transitivity p—q
~q qor
So~p S.poT
Generalization | p q Proof by pvq
-.pvq | ..pvq | Division into por
Specialization pAq PAq Cases qor
~.p .q ST
Conjunction p Contradiction ~p—C
q Rule =D
N




1.4 Application: Digital Logic Circuits

Think of certain circuits as black boxes with an input and output

Type of Gate  Symbolic Representation | Action

Input Output
P R
Not —>o— : :
0 1
Input Output
P Q R
1 1 1
S I D 5 S¢
0 1 0
0 0 0
Input Output
P Q R
1 1 1
0 1 1
0 0 0
Input Output
P Q R=P|Q
1 1 0
Nand :):)— % n
0 1 1
0 0 1
Input Output
P Q R=P{Q
1 1 1
0 1 1
0 0 0

e Never combine two input wires

e Asingle input wires can be split partway and used as input for two separate
gates

e An output wire can be used as an input wire

e No output of a gate can eventually feed back into the gate

Boolean Variable - any variable, such as an input signal or a statement variable, that
can only have two values

Boolean Expression - an expression composed of Boolean variables and their
connectives

11
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Definition A recognizer is a circuit that outputs a 1 for exactly one particular
combination of input signals and outputs 0’s for all other combinations

P| Q| R | (PAQA~R
111 0
1,10 1
101 0
1,00 0
011 0
010 0
001 0
000 0

Finding a Circuit That Corresponds to a Given Input/Output Table
Disjunctive normal form or sum-of-products - expression that is a disjunction of
terms that are themselves conjunctions in which one of P or ~P, one of Q or ~Q, and
one of R or ~R all appear.

Simplifying Combinational Circuits
Definition Two digital logic circuits are equivalent if and only if their input/output
tables are identical

1.5 Application: Number Systems and Circuits for Addition

Binary Representation of Numbers
In decimal notation any positive integer can be written uniquely as a sum of
products of the form
d-10"
Any integer can be represented uniquely as a sum of products of the form
d-2"
Where n is an integer and d is one of the binary digits or bits 0 or 1

274,




0+0=0
0+1=1
1+0=1
1+ 1 =0, and carry 1 to the next more significant bit

0-0=0
0-1=1, and borrow 1 from the next more significant bit
1-0=1
1-1=0

12 + 12 = = 102
12 + 02 = 12 = 012
02 + 12 = 12 = 02
02 + 02 = 02 = 002

The circuit must have two outputs - one for the left binary digit (carry) and one for
the right binary digit (sum). The sum can be produced using a circuit that
corresponds to the Boolean equation (PvQ) A~ (PAQ). The circuit is called a half-

adder.

Issue how to add three binary digits? Incorporate a circuit that will compute the
sum of three binary digits called a full adder. Where P and Q are added and the
result is added to R

13



: Add P and Q using a half adder to obtain a binary number with two
digits

P
+ Q
Ci S1
: Add R to the sum C;S; by adding R to S; using a half adder to obtain
C2S where S is the right most digit of the entire sum of P, Q, and R. C ( the left most
bit) is 1 if and only if C1=1 or C;=1

Ct &4
+ R
C, S
x|y|c|cary|sum| |x|y|c|s,|c,|c,| carry|sum
1(1(1 1 1 1(111({0]1(0 1 1
1(1(0] 1 0 1(1|10({0]10 1 0
1(0(1 1 0 110(1(1[0]1 1 0
1/010] O 1 110(0{1(0|D 0 1
0(1(1 1 0 ort1111110711 1 0
oi1)0( 0O 1 oi1|0111010 0 1
0|01 0 1 gloj1|1o0|1010 0 1
pg|ojof 0O U‘ pglojolofo|o0 0 0
c [ Ha L S
il
y — ¢

=
y
T




Hexadecimal Notation
Hexadecimal Notation, base 16 notation, is notation based on the fact any integer
can be uniquely expressed as a sum of numbers in the form

d-16"

Decimal Hexadecimal | 4-Bit Binary

Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111




Chapter 2 The Logic of Quantified Statements
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2.1 Introduction to Predicates and Quantified Statements |

a is a sentence that contains a finite number of variables and
becomes a statement when specific values are substituted for the variables. The
of a predicate variable is the set of all values that may be substituted in
place of the variable.

if P(x) is a predicate and x has domain D, the of P(x) is the set of
all elements of D that make P(x) true when they are substituted for x. The truth set
of P(x) is denoted
{x € D|P(x)}
Which is read, “the set of all x in D such that P(x)".

The symbol V denotes “for all” and is called

Let Q(x) be a predicate and D the domain of x. A is
a statement of the form “Vx € D, Q(x).”it is defined to be true if and only if Q (x) is
true for every x in D. It is defined to be false, if, and only if, Q (x) is false for at least
one x in D. A value for x for which Q(x) is false is called a to the
universal statement.

The technique used to show the truth of the universal statement is a method called
the - showing for each individual element of the domain the
predicate is true.

The symbol 3 denotes “there exists” and is called the existential quantifier.

Let Q(x) be a predicate and D the domain of x. An
is a statement of the form “3x € D, Q(x).”It is defined to be true if and only if Q(x) is
true for at least one x in D such that Q(x). It is defined to be false, if, and only if,
Q(x) is false for all x in D.

Universal conditional statement is a statement in the form of Vx, if P(x) then Q(x)

Vx € U, if P(x) then Q(x) = Vx € D, Q(x)
Vx € D,Q(x) = Vx, if xisin D then Q(x)




Let P(x) and Q(x) be predicates and suppose the common domain of x is
D. The notation means that every element in the truth set of P(x) is in
the truth set ofQ (x), or equivalently, Vx, P(x) — Q(x). The notation
means that P(x) and Q(x) have identical truth sets, or equivalently Vx, P(x) <

Q(x).

2.2 Introduction to Predicates and Quantified Statements 11

Negation of a Universal Statement
The negation of a statement of the form
Vxin D, Q(x)
[s logically equivalent to a statement of the form
Jx in D such that ~Q(x).
Symbolically,
(~Vx €D, Q(x)) = 3x € D such that ~Q(x)

Negation of an Existential Statement
The negation of a statement of the form
Jx in D such that Q(x)
Is logically equivalent to a statement of the form
Vxin D, ~Q(x)
Symbolically,
~(3x € D such that Q(x)) = Vx € D, ~Q(x)

~(Vx,P(x) - Q(x) = 3x such that ~(P(x) = Q(x))

~(P(x) = Q(x)) = P(x)A~Q(x)
~(Vx, P(x) = Q(x) = Ix such that P(x)A~Q(x)

~(Vx, P(x) then Q(x)) = 3x such that P(x) and ~Q(x)

If Q(x) is a predicate and the domain D of x is the set {x{, x5, ..., X, } then the
statements
Vvx € D,Q(x)
And
Qx1) AQ(x2) A= AQ(xn)

Are logically equivalent

17
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If Q(x) is a predicate and the domain D of x is the set {x;, x5, ..., x,, } then the
statements
dx € D,Q(x)
And
Q(x1) VQR(x2) V-V Q(xy)

Are logically equivalent

Consider a statement of the form
Vx € D, if P(x) then Q(x)

Its is the statement
Vx € D, if ~Q(x) then ~P(x)
Its is the statement

Vx € D, if Q(x) then P(x)
Its is the statement
Vx € D, if ~P(x) then ~Q(x)

Definition

Vx,r(x)is a for s(x) means Vx if r(x) then s(x)

Vx,r(x)isa for s(x) means Vx, if ~r(x) then ~s(x) or
equivalently Vx, if s(x) then r(x)

Vx,r(x) s(x) means Vx, if ~s(x) then ~r(x) or equivalently Vx, if r(x) then
s(x)

2.3 Statements Containing Multiple Quantifiers

~(V x in D, 3y in E such that P(x, y)) = 3xin D such that Vyin E, ~P(x,y)
~(EI x in D,Vy in E such that P(x, y)) = Vxin D such that 3y in E, ~P(x,y)

If a statement contains two different quantifiers reversing the order of the
quantifiers can change the truth value of the statement to its opposite

If one quantifier immediately follows another quantifier of the same type, then the
order of quantifier does not affect the meaning.

A simple prolog program consists of a set of statements describing some situation
together with questions about the situation. Built into the language are search and
inference techniques needed to answer the question
isabove(x, y) = x is above y
color(x,color) = x is color
?isabove(x, y) = is x above y?
? color(x,color) = is x color?




Chapter 3 Elementary Number Theory and Methods of Proof

3.1 Direct Proof and Counterexample I: Introduction
In order to evaluate the truth or falsity of a statement, you must understand what
the statement is about. You know the meanings of all the terms that occur in the
statement

An integer n is if, and only if, n equals twice some integer. An
integer n is if, and only if, n equals twice some integer plus 1
Symbolically, if n is an integer, then
niseven < 3 an integer k such thatn = 2k
nisodd < 3 aninteger k such thatn = 2k + 1

An integer n is if, and only if, n > 1 and for all positive integers r
ands, ifn =1r-s,thenr = 1ors = 1. An integer n is if, and only if, n > 1
and n = r - s for some positive integersr and s withr # 1and s # 1.
It follows that if n is an integer greater than 1, then
nis prime < V positive integersr and s,ifn =r-sthenr =1ors =1
n is composite < V positive integersrand s,ifn =r-sthenr # lands # 1

To prove a statement in the form
dx € D,Q(x)
: Find an x for which Q(x) is true or provide a set
of directions for finding an x such that Q(x) is true.
: showing either (a) that the existence of a
value x that makes Q(x) true is guaranteed by an axiom or a previously proved
theorem or (b) that the assumption that there is no such x leads to a contradiction

Disproof by Counterexample
To disprove as statement of the form “Vx € D, if P(x) then Q(x),”find a value x in D
for which P(x) is true and Q(x) is false. Such an x is called a

Method of Generalizing from the Generic Particular
To show that every element of a domain satisfies a certain property, suppose x is a
particular but arbitrary chose element of the domain, and show that x satisfies the

property.

19



Method of Direct Proof
1. Express the statement to be proved in the form “vVx € D, P(x) - Q(x)
2. Start the proof by supposing x is a particular by arbitrarily chosen element of D
for which the hypothesis P(x) is true
3. Show that the conclusion Q(x) is true by using definitions, previously
established results and the rules for logical inference.

1. Copy the statement of the theorem to be proved on your paper

2. Clearly mark the beginning of your proof with the word proof

3. Make your proof self contained (identify each variable used in the proof)
4. Write your proof in complete sentences

5. Give areason for each assertion you make in your proof

6. Include the little words that make the logic of your arguments clear
1. Arguing from examples

2. Using the same letter to mean two different things

3. Jumping to a conclusion

4. Begging the question (assuming what is to be proved)

5. Misuse of the word if

Because the negation of an existential statement is a universal statement, to
prove an existential statement is false you must prove that its negation to be
true.

3.2 Direct Proof and Counterexample II: Rational Numbers

a is rational if, and only if, it can be expressed as a quotient
of two integers with a nonzero denominator. A real number that is not rational is
. More formally, if r is a real number, then

a
risrational & 3 integers a and b such thatr = 5 andb # 0

3.3 Direct Proof and Counter Example IlI: Divisibility

If n and d are integers, then
nis d if, and only if, n = dk for some integer k

Alternatively, we say that

n d

d n
d n
d n
The notation is read “d divides n.” Symbolically, if n and d are integers
d|n & 3Faninteger k such thatn = dk

For all integersnand dwithd # 0,d t n © %is not an integer




Given any integer n > 1, there exist a positive integer k, distinct prime numbers
(p1, 2, ---,Pr) and positive integers (eq, ey, ..., €, ) such that

n = PPy 2p3®E e pic
And any other expression of n as a product of prime numbers is identical to this
except, perhaps, for the order in which the factors are written

Given any integer n > 1, the of nis an
expression of the form
n = p;1py#2p3©s - pyck
Where k is a positive integer; (p1,py, ..., Px) are prime numbers; (e, ey, ..., € ) are
positive integers; and p; < py < - < pi

3.4 Direct Proof and Counterexample IV: Division into Cases and the
Quotient-Remainder Theorem

3.5 Direct Proof and Counterexample V: Floor and Ceiling

3.6: Indirect Argument: Contradiction and Contraposition

Method by Proof by Contradiction
1. Suppose the statement to be proved is false. That is, suppose the negation of the
statement is true
2. Show that this supposition leads logically to a contradiction
3. Conclude that the statement to be proved is true

There is no greatest integer.

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is
suppose there is a greatest integer N. [We must deduce a contradiction.] Then N > n
for every integer n. Let M = N + 1. Now M is an integer since it is a sum of integers.
AlsoM > N sinceM = N + 1.

Thus M is an integer that is greater than N. So N is the greatest integer and N is not
the greatest integer, which is a contradiction. [This contradiction shows that
supposition is false and, hence that the theorem is true.]
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There is no integer that is both even and odd.

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is,
suppose there is an integer n that is both even and odd. [we must deduce a
contradiction.] By definition of even, n = 2a for some integer a, and by definition of
odd, n = 2b + 1 for some integer b. Consequently, by equating the two expressions
for n

2a=2b+1
And so
2a—2b=1
2(a—b) =1
1
—bh) ==
(a=b) =3

Now since a and b are integers, the difference a — b must also be an integer. But
1 1. . . . . .
a—b= > and > is not an integer. Thus a — b is an integer and a — b is not integer,

which is a contradiction. [This contradiction shows that the supposition is false and,
hence, that the theorem is true.]

The sum of any rational number and any irrational number is irrational

[We take the negation of the theorem and suppose it to be true.] Suppose not. That
is, suppose there is a rational number r and an irrational number s such that r+s is
rational. [we must deduce a contradiction.] By definition of rational, r=a/b and
r+s=c/d for some integers a,b,c, and d with b # 0 and d # 0. By substitution

And so

d b bd
Now bc — ad and both bd are integers [since a,b,c, and d are, and since products

and differences of integers are integers] and bd # 0 [by the zero product property].
Hence s is a quotient of the two integers bc — ad and bd # 0. Thus, by definition of
rational s is rational, which contradicts the supposition that s is irrational. [Hence,
the supposition is false and the theorem is true.]




Method of Proof by Contradiction
1. Express the statement to be proved in the form
Vx €D,P(x) - Q(x)
2. Rewrite this statement in the contrapositive form
Vx € D,~Q(x) » ~P(x)

3. Prove the contrapositive by a direct proof

Suppose x is a particular by arbitrarily chosen element of D such that Q(x) is
false

Show that P(x) is false

: For all integers n, if n? is even then n is even

Suppose n is any odd integer. [We must show that n?is odd.] By definition of odd,

n = 2k + 1 for some integer k. By substitution and algebra, n? = (2k + 1)? = 4k? +
4k + 1 = 2(2k? + 2k) + 1. But 2k? + 2k is an integer because produces and sums of
integers are integers. So n? - (an integer) + 1, and thus, by definition of odd, n? is
odd [as was to be shown.]

[We take the negation of the theorem and suppose it to be true.] Suppose not. That is,
suppose there is an integer n such that n? is even and n is not even. [We must deduce
a contradiction.] By the quotient-remainder theorem with d=2, any integer is even
or odd. Hence, since n is not even it is odd, and thus by definition of odd, n=2k+1 for
some integer k. by substitution and algebra: n? = (2k + 1)? = 4k?> + 4k + 1 =
2(2k? + 2k) + 1. But 2k? + 2k is an integer because produces and sums of integers
are integers. So n? - (an integer) + 1, and thus, by definition of odd, n? is odd.
Therefore, n? is both even and odd. This contradicts Theorem 3.6.2, which states
that no integer can be both even and odd. [This contradiction shows that the
supposition is false and, hence, that the proposition is true.]

In a proof by contraposition, the statement
Vx €D,P(x) = Q(x)
[s proved by giving a direct proof of the equivalent statement
Vx € D,~Q(x) » ~P(x)
To do this you are given an arbitrary element x of D such that ~Q(x). Then show
that~P(x).

Suppose x is an
arbitary element of D Sequence of steps ~P(x)
such that ~Q(x).

Exactly the same sequence of steps can be used as the heart of a proof by
contradiction for the given statement. The only thing that changes is the context in
which the steps are written down.
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To rewrite the proof by contradiction, you suppose there is an x in D such that P(x)
and ~Q (x). You then follow the steps of the proof by contraposition do deduce the
statement ~P(x). But ~P(x) is a contradiction to the supposition that P(x) and
~Q(x). (Because to contradict a conjunction of statement, it is only necessary to
contradict one component.)

Suppose 3x in D such Sequence of steps ~
that ~Q(x). a P 9

3.7 Two Classical Theorems

: /2 is irrational

[we take the negation and suppose it to be true.] Suppose not. That is suppose v/2 is
rational. Then there are integers m and n with no common factors such that

m
vz==2
n

[By dividing m and n by any common factors if necessary]. [ We must derive a
contradiction.] Squaring both sides of the equation gives us

2= m
=
Or, equivalently
m? = 2n?

Note that equation implies that m? is even (by the definition of even). It follows that
m is even (by proposition 3.6.4). We file this fact away for future reference and also
deduce (by definition of even) that
m =2k
Substituting m = 2k, we see that
m? = (2k)? = 4k? = 2n?
Dividing both sides of the right most equation by 2 gives
n? = 2k?
Consequently, n? is even, and so n is even (by proposition 3.6.4). But we also know
that m is even. Hence both m and n have a common factor of 2. But this contradicts
the supposition that m and n have no common factors. [Hence the supposition is false
and so the theorem is true].




For any Integer a and any prime number p, if p|a then p t (a + 1).

Suppose not. That is suppose there exists an integer a and a prime number p such
that p|a and p|(a + 1). Then by definition of divisibility, there exists integers r and s
suchthata = pranda + 1 = ps.Itfollowsthat1 = (a+ 1) —a =ps — pr = p(s —
r), and so (since s — r is an integer) p|1. But the only integer divisors of 1 are 1 and -
1, and since p is prime, p > 1. Thus p < 1 and p > 1, which is a contradiction. [Hence
the supposition is false and the proposition is true.]

The set of prime numbers is infinite

Suppose not. Suppose the set of prime numbers is finite. [We must deduce a
contradiction.] The all the prime numbers can be listed, say, in ascending order:

P1=2,02=3,04=7,..,Pn
Consider the integer

N =pipap3 - pn +1

Then N > 1, and so, by theorem 3.3.2 N is divisible by some prime number p. Also,
since p is prime, p must equal one of the prime numbers py, p2, p3, ..., P. Thus
pl(p1p2p3 - Prn)- By proposition 3.7.3 p + (p1p2p3 --*pn + 1), and sop + N. Hence
p|N and p N, which is a contradiction. [Hence the supposition is false and the
theorem is true.]

3.8 Application: Algorithms

Variable - a specific storage location in a computer’s memory
Data type - set in which the variable in which the variable takes its values
Assignments statement - gives a value to a variable
Conditional statements - allow using the current values of program variables to
determine which algorithm statement will be executed next
if (condition)

Then s,

else s,
Or

if (condition)then s;

Where condition is a predicate involving algorithm variables and where s1 and s; are
algorithm statements or groups of algorithm statements
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Execution of an if-then-else statement

1.

The condition is evaluated by substituting the current values of all
algorithms variables appearing in it and evaluating the true of falsity of the
resulting statement

If the condition is true, then s; is executed and execution moves to the next
algorithm statement following the if-then-else statement

If condition is false, then s; is executed and moves to the next algorithm
statement following the if-then-else statement

Execution of an if-then statement is similar to execution of an if-then-else
statement, except that if condition is false, execution passes immediately to the next
algorithm statement following the if-then statement. Often condition is called a
guard because it is stationed before s; and s; and restricts access of them

Iterative Statements are used when a sequence of algorithm statements is to be
executed over and over again

We will generally include the following information when describing algorithms

formally

1. The name of the algorithm, together with a list of input and output variables

2. Abrief description of how the algorithm works

3. The input variable names, labeled by data type (whether integer, real
number, and so forth)

4. The statements that make up the body of the algorithm, possibly with
explanatory comments

5. The output variable names, labeled by data types



[Given a nonnegative integer a and a positive integer d, the aim of the algorithm is to
find integers q and r that satisfy the conditions a=dq+r and 0<r<d. This is done by
subtracting d repeatedly from a until the result is less than d is still nonnegative
0<a—-d-d-d--—d=a—-dqg<d
The total number of d’s that are subtracted in the quotient q. The quantity a-dq equals
the remainder r.]
a [a nonnegative integer]|, d[a positive integer]|

r:=a, q:=0
[Repeatedly subtract d from r until a number less than d is obtained. Add 1 to q each
time d is subtracted]

(r=d)

ri=r-d

q:=q+1

[After execution of the while loop, a=dq+r]
q,r [nonnegative integers]|

Let a and b be integers that are not both zero. The
of a and b denoted gcd(a,b) is that integer d with the following properties:
1. dis a common divisor of both a and b. In other words
d|a and d|b
2. For all integers ¢, if c is a common divisor of both a and b, then c is less than or
equal to d. In other words
For all integers c, if cla and ¢|b, then ¢ < d

If r is a positive integer, then gcd(r,0)=r

Suppose ris a positive integer. [We must show that the greatest common divisor of
both r and 0 is r.] Certainly, r is common divisor of both r and 0 because r divides
itself and also r divides 0 (since every positive integer divides 0). Also no integer
larger than r can be a common divisor of r and 0 (since no integer larger than r can
divide r). Hence r is the greatest common divisor of r and 0.
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|

If a and b are any integers with b0 and q and r are any integers such that
a=bqg+r,
' Then
‘ gcd(a, b) = gedifh, r)

[Given two integers A and Bwith A > B = 0, this algorithm computes gcd(A,B). It is
based on two facts:

1. gcd(a,b)=gcd(b,r) if a,b,q, and r are integers with a=b-q+rand 0 <r < b
2. gcd(a,0)=a]

A,B [integers with A > B = 0]

a:=A, b:=B, r:=B
[If b=0, compute a mod b, the remainder of the integer division of a by b, and set r
equal to this value. Then repeat the process using b in place of a and r in place of b.]

r:=amod b

[the value of a mod b can be obtained by calling the division algorithm.]
a:=b
b:=r

[after execution of the while loop, gcd(A,B)=a.]
gcd:=a
ged [a positive integer]




Chapter 4 Sequences and Mathematical Induction

4.1 Sequences
In this section, we define the term sequence informally as a set of elements written
in a row. In the sequence denoted
Ams Am+1, Am+25 -+ An
Each individual element a,, is called a term. The kin ay, is called a subscript or
index, m (which may be any integer) is the subscript of the initial term, and n is the
subscript of the final term. The notation
Amy Am+1) A 425 -
denotes an infinite sequence. An explicit formula or general formula for a
sequence is a rule that shows hoe the values of a;, depend ok k.

The notation
n

2,
k=1
is used to represent the sum in expanded form by
a,+a;+asz+--+ag
More generally, if m and n are integers and m < n, then the summation from k

equals m to n of ay is the sum of all the terms a,,;, a;;, 11, A 42, -, Ay We write
n

z ap =ay +ani1 +apip +-+a,

k=1
And call k the index of the summation, m the lower limit of the summation, and n
the upper limit of the summation.

The product from k equals m to n of ax is the product of all the terms
Ay A 41> A2, -+, Ay That is,
n

| | A = A * 41 ° A2 Ay
k=m

for each positive integer n, the quantity denoted 1!, is defined
to be the product of all the integers from 1 to n:
nnl=n-(n—1)---3:2-1
Zero factorial, denoted 0!, is defined to be one:
0!'=1.
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Ifa,, ani1, @maz, - and by, by i1, by 42, ... are sequences of real
numbers and c is any real number, then the following equations hold for any integer
nz=zm:

One-dimensional arrays - finite sequences
Example: find the sum of a[1],a[2],...,a[n]
s:=a[1]
Fork:=2ton

s:=s+alk]
next k

4.2 Mathematical Induction I

Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:
1. P(a)istrue
2. Forall integers k > a, if P(k) is true then P(k + 1) is true.
Then the statement
for all integersn = a, P(n)
is true.

Consider a statement of the form, “For all integers n > a, a property P(n) is true.”
To prove such a statement, perform the following two steps:
Show that the property is true forn = a
Show that for all integers k > a, if the property is true for

n = k then itis true forn = k + 1. To perform this step,

Suppose that the property is true for n = k, where k is any particular but
arbitrary chosen integers with k > a. [This supposition is called the

]. Then show that the property is true forn = k + 1

Let P(n) be the property “n cents can be obtained using 3 and 5 cent coins.” Then
P(n) is true for all integers n > 8.




For all integersn > 1 |
nn+1)

1424 4n=
" 2

For any real number r except 1, and any integer n > 0,
n

Zi rn+1_1
r=—
L r—1

4.3 Mathematical Induction 11

For all integers n > 1, 22" — 1 is divisible by 3

For all integersn > 3,2n + 1 < 2™.

4.4 Strong Mathematical Induction and the Well-Ordering Principle

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers
with a < b. Suppose the following two statements are true.
1. P(a),P(a+1),..,and P(b) are all true (basis step)
2. Forany integer k > b, if P(i) is true for all integers i with a < i < k, then P(k) is
true. (inductive step)
Then the statement
for all integersn = a, P(n)
is true. (The supposition that P(i) is true for all integers i with a < i < k is called
the inductive hypothesis.)

Given any positive integer n, n has a unique representation in the form
n=c2"+c 12" + -+ 2% + ¢, 21
Where r is a nonnegative integer, ¢, = 1, and G=1or0 forallj =0,1,2,..,r—1.

Let S be a set containing one or more integers all of which are greater than some
fixed integer. Then S has a least element.
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Given any integer n and any
positive integer d, there exist integers q and r such that
n=dgq+rand0<r<d

4.5 Application: Correctness of Algorithms

Consider an algorithm that is designed to produce a certain final state from a certain
initial state. Both the initial and final states can be expressed as predicates involving
the input and output variable. The predicate describing the initial state is called the
pre-condition for the algorithm and the predicate describing the final state is called
the post-condition for the algorithm.

The method of loop invariants is used to prove correctness of a loop with respect
certain pre- and post- conditions. Suppose that an algorithm contains a while loop
and that entry to this loop is restricted by a condition G, called the guard. Suppose
also that assertions describing the current states of algorithm variables have been
placed immediately preceeding and immediately following the loop. The assertion
just preceding the loop is called the pre-condition for the loop and the one just
following is called the post-condition for the loop. The anonotated llop has the
following appearance:

[Pre-condition for the loop]

while (G)

[Statements in the body of the loop. None contain branching

statements that lead outside the loop.]

end while

[Post-condition for the loop]

Aloop is defined as correct with respect to its
if, and only if, whenever the algorithm variables satisfy the precondition for the loop
and the loop terminates after a finite number of steps, the algorithm variables
satisfy the post-condition for the loop.

Aloop invariant is a predicate with domain a set of integers, which satisfies the
condition: for each iteration of the loop, if the predicate is true before the iteration,
then it is true after the iteration. Furthermore, if the predicate satisfies the following
two additional conditions, the loop will be correct with respect to its pre- and post-
conditions:

1. Itis true before the first iteration of the loop
2. Ifthe loop terminates after a finite number of iterations, the truth of the loop
invariant ensures the truth of the post-condition of the loop.




Let a while loop with guard G be given, together with pre- and post-conditions that
are predicates in the algorithm variables. Also let a predicate /(n), called the loop
invariant, be given. If the following four properties are true, then the loop is correct
with respect to its pre- and post-conditions:
The pre-condition for the loop implies that I(0) is true
before the first iteration of the loop
For all integers k > 0, if the guard G and the loop
invariant I (k) are both true before an iteration of the loop, then I(k + 1) is
true after the iteration of the loop.
After a finite number of iterations of the loop,
the guard G becomes false.
If N is the least number of iterations
after which G is false and I (N) is true, then the values of algorithm variables
with be as specified in the post-condition of the loop.
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Chapter 5 Set Theory
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5.1 Basic Definitions of a Set Theory

Subsets

Definition If A and B are sets, then 4 is called a subset of B, written 4 B, if, and
only if, every element of A is also an element of B.
Symbolically:
ACB © Vx,ifx € Athenx € B
The phrases A is contained in B and B contains A are alternative ways of saying that
A is a subset of B.

A% B < 3Axsuchthatx € Aandx € B

00C00O

Definition Let A and B be sets. A is a proper subset of B if, and only if, every
element of 4 is in B but there is at least one element of B that is not in A.

°

Set Equality

Definition Given sets A and B, A equals B, written A = B, if, and only if, every
element of 4 is in B and every element of B is in A.
Symbolically:
A=B ©AcBandB c A.




Let A and B be subsets of a universal set U.
The of 4 and B, denoted ,is the set of all elements x in U such that x is
in A or x is in B.

AUB={x€eUlx€eAorx € B}

7
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Shaded region
represents A Ui

The of 4 and B, denoted ,is the set of all elements x in U such
that x is in A and B.
ANB={x€eU|x € Aand x € B}

{
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The of B minus 4 ( or of Ain B), denoted ,is
the set of all elements x in U such that x is in B and x is not in A.
B—A={x€eU|lx€eBandx ¢ A}

I
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The of 4, denoted A, is the set of all elements x in U such that x is not
in A.

A ={x € Ulx ¢ A}
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Shaded region

represents A°.
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Empty set or null set - a set with no elements denoted @

Two sets are called if, and only if, they have no elements in common.
Symbolically:
A and B are disjoint & ANB =0
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Sets A1, A5, ..., A, are (or or
if, and only if, no two sets A; and 4; with distinct subscripts have any
element in common. More precisely, for alli,j = 1,2, ..., n,
A; N A; wheneveri # j

|
|
|
|
|

A collection of nonempty sets {41,4,, ...,A,}is a of a set A if, and only if,
1. A :A1UA2 U"'UAn

2. Ay, A, ..., A, are mutually disjoint

Given as set 4, the of A, denoted , is the set of all subsets
of A

Let n be a positive integer and let xq, x;, ..., x, be (not necessarily
distinct) elements. The , (x1, %3, ..., X, ), consisits of xq, x5, ..., x,
together with ordering first x;, then x,, and so forth up to x,,. An ordered 2-tuple is
called an ,and an ordered 3-tuple is called an h
Two ordered n-tuples (xq, X3, ..., X,,) and (y1, y2, ..., ¥, ) are equal if, and only
if, X1 = ¥1,%2 = Y2, ., X0 = Y-
Symbolically:
(%01, 202, ooy X )} =0T V2o 0000 V) X1 = V1, Xp = Y2, 0% = Y
In particular,
(a,b)=(c,d)=>a=candb=d

Given two sets A and B the denoted
(read A cross B), is the set of all ordered pairs (a,b) were ais in A and b is in B.
Give sets A, 4y, ..., 4,, the Cartesian product of A¢, 45, ..., A,, denoted A; X Ay X -+ X
A, is the set of all ordered n-tuples (a4, a, ..., a,) where a;44,a, € Ay, ...,a, € A,