
9/8/2023

1

CMSC 223 Systems
Programming

Fall 2023
Bryn Mawr College

Instructor: Deepak Kumar

CMSC 223 Systems
Programming

C was developed in 1971-72!

1

2

9/8/2023

2

Go to class web page…

• Go to: https://cs.brynmawr.edu/
Click on the course CMSC 223

OR

• Go to: http://www.cs.brynmawr.edu/Courses/cs223/Fall2023/

3

Goals

• Learn Linux (CLI, not WIMP!)

• Learn C

• Learn Linux tools

4

3

4

9/8/2023

3

Evolution of C

5

Algol60
Designed by an international
committee, 1960

CPL (1963)
Combined Programming Language
Cambridge & Univ. of London, 1963
Was an attempt to bring Algol down
to earth and retain contact with the
realities of an actual computer.
Features:
• Big
• Too many features
• Hard to learn
• Intended for numerical as well as

non-numerical applications

BCPL (1967)
Basic CPL
Designed by Martin Richards, Cambridge 1967
Intended as a tool for writing compilers.
Designed to allow for separate compilation.
Features:
• Typeless language (only binary words)
• Introduced static variables
• Compact code
• Provides access to address of data objects
• Stream-based I/O

B (1969)
Designed by Ken Thompson, Bell Labs 1970
A true forerunner of C
Features:
• Typeless (with floating pt. capabilities)
• Designed for separate compilation
• Easily implementable
• Pre-processor facility
• Expensive library

Evolution of C

6

Algol60
Designed by an international
committee, 1960

CPL (1963)
Combined Programming Language
Cambridge & Univ. of London, 1963
Was an attempt to bring Algol down
to earth and retain contact with the
realities of an actual computer.
Features:
• Big
• Too many features
• Hard to learn
• Intended for numerical as well as

non-numerical applications

BCPL (1967)
Basic CPL
Designed by Martin Richards, Cambridge 1967
Intended as a tool for writing compilers.
Designed to allow for separate compilation.
Features:
• Typeless language (only binary words)
• Introduced static variables
• Compact code
• Provodes access to address of data objects
• Stream-based I/O

B (1969)
Designed by Ken Thompson, Bell Labs 1970
A true forerunner of C
Features:
• Typeless (with floating pt. capabilities
• Designed for separate compilation
• Easily implementable
• Pre-processor facility
• Expensive library

C
1971-72
Developed at Bell Laboratories by
Ken Thompson, Dennis Ritchie, and others.
C is a by-product of UNIX.
Ritchie began to develop an extended version of B.
He called his language NB (“New B”) at first.
As the language began to diverge more from B,
he changed its name to C.
The language was stable enough by 1973 that
UNIX could be rewritten in C.

K&R C (1978)
Described in Kernighan and Ritchie,
The C Programming Language (1978)
De facto standard
Features:
• Standard I/O Library
• long int data type
• Unsigned int data type
• Compound assignment operators

C89/C90
ANSI standard X3.159-1989
Completed in 1988
Formally approved in December 1989
International standard ISO/IEC 9899:1990
A superset of K&R C
Heavily influenced by C++, 1979-83
• Function prototypes
• void pointers
• Modified syntax for parameter declarations
• Remained backwards compatible with K&R C

C99
International standard ISO/IEC 9899:1999
Incorporates changes from Amendment 1 (1995)
Features:
• Inline functions
• New data types (long long int, complex, etc.)
• Variable length arrays
• Support for IEEE 754 floating point
• Single line comments using //

Onwards to C11, C17, C23?

5

6

9/8/2023

4

First C Program: Hello, World!

#include <stdio.h>

int main(void) {

 printf(“Hello, World!.\n");

 return 0;

}

• This program might be stored in a file named hello.c.

• The file name doesn’t matter, but the .c extension is often required.

7

Properties of C

• Low-level

• Small

• Permissive

8

7

8

9/8/2023

5

Strengths of C

• Efficiency

• Portability

• Power

• Flexibility

• Standard library

• Integration with UNIX/Linux

9

Weaknesses of C

• Programs can be error-prone.

• Programs can be difficult to understand.

• Programs can be difficult to modify.

10

9

10

9/8/2023

6

Effective Use of C

• Learn how to avoid pitfalls.

• Use software tools to make programs more reliable.

• Take advantage of existing code libraries.

• Adopt a sensible set of coding conventions.

• Avoid “tricks” and overly complex code.

• Stick to the standard.

• Try and adapt the good habits from programming in Java!

11

First C Program: Hello, World!

#include <stdio.h>

int main(void) {

 printf(“Hello, World!.\n");

 return 0;

}

• This program might be stored in a file named hello.c.

• The file name doesn’t matter, but the .c extension is often required.

12

11

12

9/8/2023

7

First C Program: Hello, World!

// Name: Xena W. Princess
// Purpose: My first C Program, prints: Hello, World!
// Written on September 5, 2023

#include <stdio.h>

int main(void) {
 printf(“Hello, World!.\n");
 return 0;
} // end of main()

• This program might be stored in a file named hello.c.

• The file name doesn’t matter, but the .c extension is often required.

13

Compilation Process

[xena@codewarrior cs223]$ gcc hello.c

[xena@codewarrior cs223]$./a.out
Hello, World!
[xena@codewarrior cs223]$

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

14

13

14

9/8/2023

8

Excursion to Linux

15

How to create, edit, compile, and run C programs.

Compilation Process – GNU C Compiler

[xena@codewarrior cs223]$ gcc –o hello hello.c

[xena@codewarrior cs223]$./hello
Hello, World!
[xena@codewarrior cs223]$

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

16

15

16

9/8/2023

9

Compilation Process

Compilation is a 3-step process

1. Preprocessing
Source code commands that begin with a # are preprocessed. E.g.,

#include <stdio.h>

2. Compiling
Source code is translated into object code (m/c language)

3. Linking
All libraries/modules used by the program are linked to produce an executable
object code

Preprocessing is normally integrated into the compiler. Linking is done by a separate
program/command.

17

#include <stdio.h>

int main(void) {

 printf(“Hello, World!.\n");

 return 0;

}

Compilation Process

Compilation is a 3-step process

Source code
(hello.c)

C Compiler
(gcc hello.c)

Preprocesses and
Compiles source

code

Executable/Object Code
(a.out)Object Code

(hello.o)

Linker

Links all needed
object files to

produce an
executable file

(a.out)

Source code
(hello.c)

C Compiler
(gcc hello.c)

Executable/Object Code
(a.out)

The gcc command, in its simplest form, integrates all three steps.

18

17

18

9/8/2023

10

C Program Structure (for now)

directives

int main(void) {

 statements
}

19

#include <stdio.h>

int main(void) {

 printf(“Hello, World!.\n");

 return 0;

} // end of main()

C Program Structure (for now)

directives

int main(void) {

 statements
}

20

#include <stdio.h>

int main(void) {

 printf(“Hello, World!.\n");

 return 0;

} // end of main()

• Before a C program is compiled, it is first edited by a preprocessor.

• Commands intended for the preprocessor are called directives.

• <stdio.h> is a header containing information about C’s standard
I/O library.

19

20

9/8/2023

11

main()

• The main() function is mandatory.

• main() is special: it gets called automatically when the program is
executed.

• main returns a status code; the value 0 indicates normal program
termination.

• If there’s no return statement at the end of the main function,
many compilers will produce a warning message.

21

#include <stdio.h>

int main(void) {

 printf(“Hello, World!.\n");

 return 0;

} // end of main()

Printing Strings

• The statement

 printf("To C, or not to C: that is the question.\n");

 could be replaced by two calls of printf:

 printf("To C, or not to C: ");

 printf("that is the question.\n");

• The new-line character can appear more than once in a string literal:

 printf("Brevity is the soul of wit.\n --Shakespeare\n");

22

21

22

9/8/2023

12

Comments – Two styles /*…*/ or //

• Begins with /* and end with */.

/* No comment */

• Comments can also be written in the following way:

// No comment

• Advantages of // comments:
• Safer: there’s no chance that an unterminated comment will accidentally

consume part of a program.
• Multiline comments stand out better.

23

Another Program
(variables, assignment, formatted output)
File: small.c
#include <stdio.h>

int main(void) {

 int A, B, C;

 A = 24;
 B = 18;
 C = A + B;

 printf(“C = %d\n”, C);
} // main()

[xena@codewarrior cs223]$ gcc –o small small.c
[xena@codewarrior cs223]$./small
C = 42
[xena@codewarrior cs223]$

24

23

24

9/8/2023

13

Printing the Value of a Variable
• %d works only for int variables; use %f to print a float variable

• By default, %f displays a number with six digits after the decimal point.

• To force %f to display p digits after the decimal point, put .p between %
and f.

• To print the line

 Profit: $2150.48

 use the following call of printf:

 printf("Profit: $%.2f\n", profit);

• There’s no limit to the number of variables that can be printed by a single
call of printf:

 printf("Height: %d Length: %d\n", height, length);

25

Input

• scanf() is the C library’s counterpart to printf.

• Syntax for using scanf()

scanf(<format-string>, <variable-reference(s)>)

• Example: read an integer value into an int variable data.

 scanf("%d", &data); //read an integer; store into data

• The & is a reference operator. More on that later!

26

25

26

9/8/2023

14

Reading Input

• Reading a float:

 scanf("%f", &x);

• "%f" tells scanf to look for an input value in float format (the
number may contain a decimal point but doesn’t have to).

27

Standard Input & Output Devices

• In Linux the standard I/O devices are, by default, the keyboard for input,
and the terminal console for output.

• Thus, input and output in C, if not specified, is always from the standard
input and output devices. That is,

printf() always outputs to the terminal console

scanf() always inputs from the keyboard

• Later, you will see how these can be reassigned/redirected to other
devices.

28

27

28

9/8/2023

15

Program: Convert Fahrenheit to Celsius

• The celsius.c program prompts the user to enter a Fahrenheit
temperature; it then prints the equivalent Celsius temperature.

• Sample program output:

 Enter Fahrenheit temperature: 212

 Celsius equivalent: 100.0

• The program will allow temperatures that aren’t integers.

29

Take a few minutes to write the program.

Program: Convert Fahrenheit to Celsius
ctof.c
#include <stdio.h>

int main(void)

{

 float f, c;

 printf("Enter Fahrenheit temperature: ");

 scanf("%f", &f);

 c = (f – 32) * 5.0/9.0;

 printf("Celsius equivalent: %.1f\n", c);

 return 0;

} // main() Sample program output:

 Enter Fahrenheit temperature: 212

 Celsius equivalent: 100.0

30

29

30

9/8/2023

16

Acknowledgements

Some content from these slides is based on the book, C Programming –
A Modern Approach, By K. N. King, 2nd Edition, W. W. Norton 2008.

Materials are also included from the lecture slides provided by Prof. K.
N. King. Thank You!

31

31

	Slide 1: CMSC 223 Systems Programming
	Slide 2: CMSC 223 Systems Programming
	Slide 3: Go to class web page…
	Slide 4: Goals
	Slide 5: Evolution of C
	Slide 6: Evolution of C
	Slide 7: First C Program: Hello, World!
	Slide 8: Properties of C
	Slide 9: Strengths of C
	Slide 10: Weaknesses of C
	Slide 11: Effective Use of C
	Slide 12: First C Program: Hello, World!
	Slide 13: First C Program: Hello, World!
	Slide 14: Compilation Process
	Slide 15: Excursion to Linux
	Slide 16: Compilation Process – GNU C Compiler
	Slide 17: Compilation Process
	Slide 18: Compilation Process
	Slide 19: C Program Structure (for now)
	Slide 20: C Program Structure (for now)
	Slide 21: main()
	Slide 22: Printing Strings
	Slide 23: Comments – Two styles /*…*/ or //
	Slide 24: Another Program (variables, assignment, formatted output)
	Slide 25: Printing the Value of a Variable
	Slide 26: Input
	Slide 27: Reading Input
	Slide 28: Standard Input & Output Devices
	Slide 29: Program: Convert Fahrenheit to Celsius
	Slide 30: Program: Convert Fahrenheit to Celsius ctof.c
	Slide 31: Acknowledgements

