
1

CMSC 223 Systems Programming
Lab 7: Words, Words, Words!

Here is a problem: Given a text, what is its vocabulary? What are the top 25 most frequently used
words?

That is, how many words are used. For example, the entire text of the children’s book, Green Eggs and
Ham by Dr. Seuss, contains only 50 words. How many words are there in Lewis Carroll’s Alice’s
Adventures in Wonderland?

In this lab we will try and answer two questions about texts:

1. How many words are used in a given text?
2. What are the twenty-five most frequent words used in a given text?

To answer these questions, we will write some C programs (so we can exercise our understanding and
use of arrays and strings) and, along the way, learn to solve problems by combining small programs with
some of the Linux commands and utilities.

1. How many words in a given text?

Whenever one must process text, the tricky question is dealing with punctuations. For example, in the
sentence below:

O’er the ramparts we watched, were so gallantly, streaming?

The apostrophe in the word, O’er, could be replaced by a ‘v’. But what about words like it’s, didn’t,
etc.? Properly addressing these comprehensively requires deep knowledge of syntax rules which can
then be incorporated in a program. Additionally, if we’re only interested in counting words, we must
normalize words spelled in upper/lowercase letters. For example, a “The” at the start of a sentence is
the same word as “the” elsewhere in a sentence.

To simplify issues surrounding punctuations and capitalizations, we will make the following decision:
before processing any text, we will replace all punctuations with a blank character (thus “O’er” will
become “O er”), and we will convert all uppercase letters into lowercase. This will obviously result in
an approximation but will nevertheless get us started without too much loss, as you will soon see.

Linux has some very useful commands that come in handy when solving problems. With a good
knowledge of the command set, you do not always have to write programs to address all processing
tasks. The commands enable us to process data much more efficiently and correctly.

tr – translate or delete characters

The tr command has the following incantation:

tr [OPTION]… SET1 [SET2]

The command takes input from standard input and translates any occurrence of the pattern specified in
SET1 in the input into the pattern specific in SET2 (the presence of SET2 is optional, as indicated by the
square brackets [SET2]). For example, the command:

tr A-Z a-z

2

converts all uppercase letters in the input, into lowercase letters. Go ahead and enter the command in
your shell and enter some text to see how it works.

Let’s take the Green Eggs and Ham text (in ~dkumar/cs223/Lab7/ham.txt) as our test input. First,
examine its contents (using cat/more/less). Next, try the command:

tr A-Z a-z < ~dkumar/cs223/Lab7/ham.txt

You will see that all the text is now converted into lowercase letters. Next try the command:

tr [:punct:] “ “ < ~dkumar/cs223/Lab7/ham.txt

All punctuations disappear and are replaced by a space character (“ “). Thus, to eliminate all
punctuations and convert all letters to lowercase, we can use the Linux pipe in a single command:

tr A-Z a-z < ~dkumar/cs223/Lab7/ham.txt | tr [:punct:] “ “

Nice. We accomplished all this without writing any programs!

For the next task, to count the number of words, we can again, instead of solving the entire problem,
write a very simple program that does the following:

Program: words
Usage: words < textFile
Output: Prints out all the words in textFile so that only one word appears on each line.

For example, the first two lines of Green Eggs and Ham:

I am Sam
I am Sam

Will be printed as:

I
am
Sam
I
am
Sam

Using the command:

./words < ~dkumar/cs223/Lab7/ham.txt

And you can also cascade the earlier commands to give you the output below:

i
am
sam
i
am
sam

3

Here is the main program:

#define MAX_WORD_LEN 30 // Assume no word will be more than 30 chars
int main(void) {
 char word[MAX_WORD_LEN+1];

 while ((scanf(“%s”, word)) != EOF)
 printf(“%s\n”, word);
 return 0;
} // main()

The program above reads a word at a time, using scanf(), and then prints it out to standard output.
Question: Why is the word array defined to be one more than the MAX_WORD_LEN?

Go ahead, complete and enter the program above in a file called words.c and make sure you can run it
on the ham.txt file as shown above.

Next, use the command

tr A-Z a-z < ~dkumar/cs223/Lab7/ham.txt | tr [:punct:] “ “ | ./words

You will see that each word is now output on a single line. Our next task is to make sure that this word
list has no repeated words. To do this, you can use a combination of two Linux commands: sort, uniq

tr A-Z a-z < ~dkumar/cs223/Lab7/ham.txt | tr [:punct:] “ “ | ./words | sort | uniq

The sort command sorts the input words so that all duplicates will now appear next to each other (you
can run the command above without the “| uniq”. Finally, the uniq command eliminates all duplicate
lines that are next to each other. Look at their man pages for more information.

Lastly, all you must do is count how many words are in the output. You can do that using the wc
command.

Did you get 50? Legend has it that someone challenged Dr. Seuss that he couldn’t write a story using just
50 words. His book, Cat In The Hat, uses only 236 words. How many words does Alice’s Adventures In
Wonderland use? Go ahead and try it. It is in ~dkumar/cs223/Lab7/Alice.txt

You now have a chain of commands to accomplish the task. Linux allows you to define a command of
your own that will carry out all the commands in the chain as needed. This is called a script. To create a
simple script, create a new file named, getwords, with the following contents:

#!/bin/bash
tr A-Z a-z < ~dkumar/cs223/Lab7/ham.txt | tr [:punct:] “ “ | ./words | sort | uniq

Make sure the above file is executable:

chmod 755 getwords

You can now run the entire set of commands by entering just the name of the script file:

./getWords

This is your first Linux script. We will experiment more with scripts later in the course.

4

2. What are the twenty-five most frequent words used in a given text?

We can write a program that processes the output from (1) to count words. Make a copy of words.c.
into countWords.c. Here is the start of an algorithm to count words:

Initialize wordlist, an empty array of words
While there is a word in the input
 add the word to the wordlist, only if it isn’t already there

You can use the following definition of wordlist:

char wordlist[MAX_WORDS][MAX_WORD_LEN+1];

You can define MAX_WORDS to be some large number, sufficient for the text: say 10,000. The code for
the above algorithm may look like this:

int nw = 0; // Number of words stored so far
while ((scanf(“%s”, word)) != EOF)
 int p = search(wordlist, nw, word); // Look for word in wordlist

 if (p < 0) { // search returns -1 if word not in wordlist, index o/w
 strcpy(wordlist[nw], word); // copy word into wordlist
 nW = nw + 1;
 }
 }

The search() function can be written as below:

int search(char words[][MAX_WORD_LEN+1], int n, char w[]) {
 // Look for word, w in words.
 // Return -1 if not found, o/w return index such that words[index]=w

 for (int index=o; I < n; i++) {
 if (strcmp(words[index], w) == 0)
 return index;
 }
} // search()

Complete, write and test your program so that it confirms that you have created the word list. You will
need to use the command:

tr A-Z a-z < ~dkumar/cs223/Lab7/ham.txt | tr [:punct:] “ “ | ./countWords

Next, create an array of counts and add the commands in boldface shown below:

5

int counts[MAX_Words] = {0};

int nw = 0; // Number of words stored so far
while ((scanf(“%s”, word)) != EOF)
 int p = search(wordlist, nw, word); // Look for word in wordlist

 if (p < 0) { // Search returns -1 if word not in wordlist, index o/w
 strcpy(wordlist[nw], word); // copy word into wordlist
 counts[nw++]++;
 }
 else
 counts[p]++;
 }

Now, you have two parallel arrays: one that has all the words, and the second recording how many
times a word has been seen. That is:

Wordlist = i counts = 85
 am 16
 sam 19
 … …

Next, you need to sort the two arrays, by count, and print out the top twenty five most frequent words.
Here are the commands you can add to the end of the above code:

sort(counts, wordlist, nw);

for (int i = 0; i < 25; i++)
 printf(“%3d: %s\n”, counts[i], wordlist[i]);

You can use any sort method you like.

Once done, send an email to your instructor with the list of 5 most frequent
words (and their counts) in Alice.txt

