
1

Lab#12/Assignment 5: Discrete Event Simulation Using Queues – Part 2

Putting it all together!

[Note: This Lab/Assignment requires you to have completed Labs 10 and 11.]

So far in Lab 11, we have designed, implemented, and tested three modules/units: Customer, Kiosk, and
Queue. Now, it is time to put all the pieces together into a simulation program. Let’s call it des.c (for discrete
event simulation). This program will simulate what happens in an airport check-in hall: that is, in each minute up
to 3 customers can arrive and queue up. We will be able to vary the number of kiosks to explore what may be
the optimum number so that, say in an hour, the average queue length is no more than three customers.

The des.c program, again we will be implementing it incrementally, uses a queue of customers and assigns
them to available kiosks as and when they are available. By simulating what happens in each minute, our
program will be able to control all aspects of the simulation.

The diagram below shows the design of our program, and its associated files:

2

It also summarizes, for each data type/module, what data each module holds, and summarizes all the functions
we can use. We will write our simulation so that we can run it repeatedly with two varying parameters: how
long (in minutes) should the simulation run, and also how many kiosks to make available for that duration. For
example, here is a command to run the simulation for 10 minutes, using 4 kiosks:

[Xena@CodeWarrior] $./des 10 4

As you can see in the figure above, the des.c program uses a number of kiosks and a checkInQueue. Further,
it defines three functions that are explained below:

1. arrival() – returns the number of customers that arrived in any given minute.
2. simulate(m, k) – runs the simulation for m minutes on k kiosks
3. main() - the main program which essentially sets up the simulation parameters.

Of the above, simulate() is the key function. It actually carries out the simulation. Here is an algorithm for it:

simulate(m, k) - runs the simulation for m minutes on k kiosks

Create k kiosks and store them in a variable named, kiosks
Create checkInqueue, a queue of customers

for each minute in the simulation
 let n = # of customers that arrived in this minute
 create n customers and add them to the queue
 for each kiosk that is not busy
 assign a customer from the queue to a kiosk
 each kiosk serves a customer assigned to them for 1 minute

We will begin by implementing pieces of the above algorithm. The description above is missing some aspects:
keeping track of how many customers were served, or the average queue length, etc. We will add this
functionality later after we have completed the implementation of the algorithm above. With that in mind, here
is an initial design of the simulate() function:

void simulate(int m, int k) { // simulate for m minutes on k kiosks
 // create nk kiosks
 Kiosk *kiosks[k];
 for (int i=0; i < nk; i++)
 kiosks[i] = newKiosk();
 printf("There are %d kiosks.", nk);

 printf("["); // Let us print out each kiosk…
 for (int i=0; i < nk; i++)
 printf("%s ", kioskToString(kiosks[i]));
 printf("]\n");

 // Create a queue of customers
 Queue *checkInQueue;
 checkInQueue = newQueue();

3

 int nc = 0; // Total customers arrived
 // for each minute…
 for (int t=1; t <= minutes; t++) {
 // n Customers arrive
 int n = arrivals();
 // create and add each customer to the queue
 for (int i = 1; i <= n; i++) {
 Customer *c = newCustomer(t);
 insertQ(checkInQueue, c);
 nc++;
 }

 printf("At time %d there are %d customers on Q.\n", t, sizeQ(checkInQueue));
 }
} // simulate()

Compare the above program to the algorithm for simulate() presented above. We have only addressed the
first few steps. This is a good way to start, put the program together, and start to employ the units/modules we
developed earlier.

Notice that we are using the arrival() function to retrieve the number of customers that arrived. This
function’s prototype is:

int arrival(); // Returns the number of customers that arrived (any value [0..3])

Use the random number generator (remember to seed it in the main() function) to complete this function. And
finally, the starter version of the main() function:

int main(void) {
 srand(time(NULL));

 simulate(10, 4);

 return 0;
} // main()

Task#1: Implement and test the program. Make sure, if you haven’t already done so, to create a Makefile for
use in recompiling and building the project.

Task#2: Once you have completed and tested the program in Task#1, modify the main() function so that it can
accept command line parameters and is able to pass them to the simulate() function.

Assigning customers to kiosks: The next step, dispatching customers to kiosks, requires checking for idle kiosks,
and assigning customers to them (if there are any in the queue). You will need to add just a few lines of code to
accomplish this. First, think about what you need to do here and see if you can accomplish this on your own. You
should be able to. Once done, compare your answer to the one provided below:

4

 // Assign customer(s) to kiosk(s)
 for (int k = 0; k < nk; k++) {
 if (!busy(kiosks[k]) && !emptyQ(checkInQueue)) {
 Customer *c = removeQ(checkInQueue);
 assignCustomer(kiosks[k], c);
 }
 }
 printf("["); // print out status of all kiosks
 for (int i=0; i < nk; i++)
 printf("%s ", kioskToString(kiosks[i]));
 printf("]\n");

Again, at the end, we print out the kiosks just to be able to peek in on customer assignments. At this stage, here
is an example output from the des.c program we have so far:

[Xena@CodeWarrior] $./des 10 4
There are 4 kiosks.[K1: [] K2: [] K3: [] K4: []]

At time 1 there are 1 customers on Q [1].
[K1: <C1: 1, 7> K2: [] K3: [] K4: []]

At time 2 there are 0 customers on Q [1].
[K1: <C1: 1, 7> K2: [] K3: [] K4: []]

At time 3 there are 3 customers on Q [4].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 4 there are 0 customers on Q [4].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 5 there are 3 customers on Q [7].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 6 there are 4 customers on Q [8].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 7 there are 5 customers on Q [9].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 8 there are 5 customers on Q [9].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 9 there are 6 customers on Q [10].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

At time 10 there are 6 customers on Q [10].
[K1: <C1: 1, 7> K2: <C2: 3, 7> K3: <C3: 3, 5> K4: <C4: 3, 8>]

5

Task#3: Implement the above commands in your program (or use your own) and make sure you are able to get a
similar output from your program as shown above.

Study the output above (and that of your program) carefully as it is showing what happened in every minute of
the simulation we have implemented so far. You will notice that once four customers were assigned a kiosk, the
remainder of them just have to wait on the queue. This is because we haven’t yet added the commands to
service each customer at a kiosk. That is our next task.

Kiosks run for 1 minute: Next, we add the following code to run each kiosk for 1 minute:

// Kiosks run for 1 minute
for (int k=0; k < nk; k++)
 tick(kiosks[k]);

printf("["); // print out status of all kiosks
for (int i=0; i < nk; i++)
 printf("%s ", kioskToString(kiosks[i]));
printf("]\n");

Now you will be able to see the customers that have been served by any kiosks. Study the tick() method in the
Kiosk module (in Part 1 from last week) to understand what needs to be done for 1 minute of servicing. Review
it and make sure that customers are being served and removed from the queue based on their service time.

Again, run the program several times. Vary the number of minutes, and kiosks to see how the queue
grows/shrinks.

Recording data: Finally, we can add some code to measure the pertinent information for this simulation:

• How many total customers arrived during the simulation?
• How many were served during the simulation?
• What was the average queue length during the simulation?

Task#4: In the des.c file, add the variable:

int queueLength = 0; // total of all queue lengths during simulation

Add the commands:

queueLength += sizeQ(checkInQueue);

at appropriate places in the simulate() function. And, at the end, add commands to printout the following
metrics:

Simulation: 10 minutes, with 4 kiosks
24 customers arrived.
17 customers served.
Average queue length: 3.2

Complete the program and run the simulation for the duration of 60 minutes. Use different number of kiosks.
And see if you can determine the optimum number of kiosks needed to keep no more than three customers
waiting in queue, on average.

6

Fill the table below. In each box write down n1/n2/x where n1 is the number of customers arrived, n2 is the
number of customers served, and x is the average queue length.

#Kiosks-> 1 2 4 8 9 10

Run#1

2

3

4

5

6

7

8

9

10

#Kiosks-> 11 12 13 14 15 16

Run#1

2

3

4

5

6

7

8

9

10

7

#Kiosks-> 17 18 19 20 21 22

Run#1

2

3

4

5

6

7

8

9

10

With a little more effort, the program can be easily extended to generate the tables above. The data can then be
plotted so that one can see the performance of the system with different number of kiosks, the number of
customers arrived, and served.

Using the DEBUG flag: You will notice that when you run the simulation for longer times (e.g., 60 minutes) the
program produces too much output. Once you have ensured, during testing, that the program runs correctly.
Make use of the DEBUG macro to suppress the printing when it is not in DEBUG mode. This way, the print
statements remain in the program for later use, in case you need to modify, enhance, or debug the program.

Some other things to think about:
What will happen if the customer arrivals double (that is up to 6 customers arrive in every minute)?
What about if the time taken at a kiosk could be reduced by half (say between 3 to 4 min)?
What if, at any given time, 15% of the kiosks are out of service?
The simulation can easily be extended to answer such questions.

