
CS151:Spring 2023

Lab 10

Write a AVLTee that extends your LinkedBinaryTree (from A6)

1. Add a parent reference and a height instance variable to the Node class of LinkedBinaryTree.
Inheritance of inner/nested classes of Java could be weird so it’s easier to just make changes
to Node in LinkedBinaryTree instead.

2. Modify/override LinkedBinaryTree and/or AVLTree so that parent and height are set cor-
rectly on insertion and deletion. You might need additional helper methods (to compute
height, for example).

3. Override toString of the Node class to print the element followed by its height in parenthesis

4. Modify/Override toStringInOrder so that it uses the above toString of Node and returns
a traversal string listing the elements with height attached.

5. Implement rebalance with associated helpers (rotateLeft, rotateRight, rotateLeftRight,
rotateRightLeft) and call appropriately on insertion.

6. Create an AVLTree<String> and insert the exercise example given in class, i.e. “M”, “N”,
“O”, “L”, “K”, “Q”, “P”, “H”, “I”, “A” and the final balanced tree should look like this:

7. Override toString of AVLTree to print out the in-order traversal, with the height of each
node attached. For example, the tree above should return the following string:

A(1) H(2) I(3) K(1) L(2) M(1) N(4) O(1) P(2) Q(1)

1


